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a b s t r a c t

The problem of estimating the scale matrix Σ in a multivariate additive model, with
elliptical noise, is considered from a decision-theoretic point of view. As the natural
estimators of the form Σ̂a = a S (where S is the sample covariance matrix and a
is a positive constant) perform poorly, we propose estimators of the general form
Σ̂a,G = a

(
S + SS+ G(Z, S)

)
, where S+ is the Moore–Penrose inverse of S and G(Z, S)

is a correction matrix. We provide conditions on G(Z, S) such that Σ̂a,G improves over
Σ̂a under the quadratic loss L(Σ, Σ̂) = tr

(
Σ̂ Σ−1

− Ip
)2. We adopt a unified approach to

the two cases where S is invertible and S is singular. To this end, a new Stein–Haff type
identity and calculus on eigenstructure for S are developed. Our theory is illustrated
with a large class of estimators which are orthogonally invariant.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Let Y be an observed n × p matrix under the multivariate additive model

Y = M + E, E ∼ ES(0,Σ, In), (1)

here M denotes the unknown n × p matrix of parameters, E is an n × p elliptically symmetric distributed noise with
nknown covariance matrix proportional to In ⊗ Σ (see (9)). Here, Σ is a p × p invertible scale matrix and In is the
-dimensional identity matrix. The class of elliptically symmetric distributions encompasses a large number of important
istributions such as the Gaussian, Cauchy, exponential, Student-t distributions and the Weibull distribution. Our main
ssumption is that the column space of M is known (or can be approximated by a known linear subspace). Also its known

rank q satisfies

1 ≤ rank(M) = q < p ∧ n , (2)

where p ∧ n = min{p, n}.
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This model has been addressed by Candès et al. [3] who assumed that, even if M is unknown, its rank is known or can
be approximated by a low-rank matrix. See also Candès and Recht [2], Ji et al. [21] and Nguyen et al. [26] in an applied
setting. Note that Canu and Fourdrinier [4] extended to an elliptical context the Gaussian approach adopted by Candès
et al. [3]. While these authors were interested in estimating the mean matrix M , here, the parameter of interest is the
scale matrix Σ , which coincides with the covariance matrix in the Gaussian setting.

Thanks to the low-rank assumption (2), the additive model (1) can be presented in a canonical form (Z,U) which
separates information about the mean structure (a q × p matrix Z) and the information concerning the scale (a p × p
matrix S = U⊤ U , where U is a (n − q) × p matrix). In this canonical context (see Section 2.1), the usual estimators are
represented by

Σ̂a = a S , (3)

where S is the sample covariance matrix and a is a positive constant. As these natural estimators perform poorly, we
consider alternative estimators under the quadratic loss function

L(Σ, Σ̂) = tr
(
Σ̂ Σ−1

− Ip
)2
, (4)

where Σ̂ is an estimator of Σ and tr(A) denotes the trace of the matrix A.
In the literature, two cases are distinguished: the case where S is invertible (p ≤ n − q) and the case where S is

singular (p > n − q). As pointed out by James and Stein [20], the estimators in (3) are inadmissible under a normal
multivariate distribution, which naturally remains true in the general elliptical setting. Since then, numerous authors
have suggested improved estimators which improve over the unbiased estimator S/(n − q − 1) and over the maximum
likelihood estimator S/(n − q). In the invertible case (p ≤ n − q), referred here as the low-dimensional setting, the
literature includes, Stein [28,29], Efron and Morris [8], Haff [15], Takemura [30], Dey and Srinavasan [7], Sheena [27].
Also, Kubokawa and Srivastava [24] showed that, under the Stein loss function tr(Σ̂Σ) − log |Σ̂Σ | − p, the improved
stimators proposed in the normal setting remain robust, in the sense that they are still improved estimators within
he elliptical distributions class. However, to our knowledge, a similar extension under the quadratic loss (4), which is
ore difficult to handle than the Stein loss, has not yet been obtained. More recently, with the massive amount of high

hroughput data, much interest has turned to the non-invertible case (p > n− q), often referred to the high-dimensional
etting. Many authors proposed improved estimators in the Gaussian setting such as, Chen et al. [5], Ikeda et al. [19],
sukuma and Kubokawa [32], Tsukuma [31] and Konno [22], who extended the result due to Haff [15], in the invertible
ase, to the high-dimensional setting and proposed improved estimators under the quadratic loss (4). However, as in the
nvertible case (p ≤ n − q), no results have been yet established in the general elliptical framework under this loss.

Our main objective is the derivation of dominance results for alternative estimators of the form

Σ̂a,G = a
(
S + SS+G(Z, S)

)
, (5)

ver the usual estimators Σ̂a = a S where a is a positive constant and G(Z, S) is a p × p matrix function. The two main
eatures of our approach is that we treat the general elliptically symmetric distributions context and we unify the two
ases where S is singular and S is invertible. For that purpose, we denote by S+ the Moore–Penrose inverse when S is
ingular, and the regular inverse S−1 when it is invertible.
The remainder of this paper is organized as follows. The primary decision-theoretic results are presented in Section 2.
e give sufficient conditions on the correction matrix function G(Z, S) for which Σ̂a,G improves on Σ̂a. To do this, we
erive a new version of the so-called Stein–Haff identity for this setting, which is the basis on which the development
f improved estimators depends. In Section 3, based on a new calculus on eigenstructure of S, we apply the results of
ection 2 to the class of orthogonally invariant estimators. We also extend the estimator due to Haff [17] and Konno [22],
n the low-dimensional setting and under the Gaussian assumption, to the class of elliptical symmetric distributions. In
ection 4 examples illustrate the theory. In Section 5 we investigate the amount of improvement provided by the Konno
stimator (see [22]) through numerical study. Finally, an Appendix contains technical results and the proofs of some of
he findings in this paper.

. Improved estimators

.1. The canonical form of the model (1)

As mentioned in Section 1, we deal with the additive model (1) through its canonical form. To this end, we follow the
ines of Canu and Fourdrinier [4]. For more details on the canonical model, see Fourdrinier et al. [13].

Thanks to the low-rank assumption (2), there exists Q2, a semi-orthogonal n×m matrix, where m = n− q, such that

Q⊤

2 M = 0m×p . (6)

omplete Q2 with Q1 to form an n × n orthogonal matrix Q = (Q1Q2), so that we can write

Q⊤ Y =

(
Z
U

)
=

(
Q⊤

1
⊤

)
Y =

(
Q⊤

1
⊤

)
M + Q⊤ E =

(
θ

0

)
+ Q⊤E,
Q2 Q2

2
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with θ = Q⊤

1 M , thanks to (6). The canonical form of the additive model (1) is(
Z
U

)
=

(
θ

0

)
+ Q⊤ E, (7)

where Z and U are respectively q × p and m × p matrices. In the Gaussian setting, this canonical form was recently
considered by Tsukuma and Kubokawa [32] in order to estimate the covariance matrix. Now, if we assume that E = Y −M
has a density with respect to the Lebesgue measure in Rpn, it is necessarily of the form

ε ↦→ |Σ |
−n/2 f {tr

(
εΣ−1ε⊤

)
} , (8)

for some function f (called the generating function). Note that it can be shown that the covariance of E equals
1
p n

E
[
tr
(
E Σ−1 E⊤

)]
In ⊗Σ , (9)

where E denotes the expectation with respect to the density in (8) (see for instance Fang and Zang [9]). Note also that
Q⊤E has density

E ↦→ |Σ |
−n/2 f {tr

(
Q⊤ E Σ−1 E⊤ Q

)
} = |Σ |

−n/2 f {tr
(
E Σ−1 E⊤

)
} , (10)

y orthogonality of Q . Thus the distribution of the noise is invariant under this orthogonal transformation. It follows that
Z⊤U⊤)⊤ = Q⊤ Y has an elliptically symmetric distribution around the matrix (θ⊤0⊤)⊤. Hence, from (7) and (10), the
joint density of Z and U is

(z, u) ↦→ |Σ |
−n/2 f

[
tr

{(
z − θ

u

)
Σ−1

(
z − θ

u

)⊤
}]

= |Σ |
−n/2 f

[
tr{(z − θ )Σ−1(z − θ )⊤} + tr{Σ−1 u⊤u}

]
. (11)

s no unbiased estimator of the risk difference between Σ̂a,G in (5) and Σ̂a in (3) is available, we need to reduce the class
f density (11). The development essentially incorporates an integration by parts involving densities obtained from the
riginal density (11) via a one dimensional integral of the tail of the density in (11); it is related to a technique developed
y Berger [1] in the spherically symmetric case. Thus, we define the densities

(z, u) ↦→
1
K ∗

|Σ |
−n/2 F∗

[
tr{(z − θ )Σ−1 (z − θ )⊤} + tr{Σ−1 u⊤u}

]
(12)

nd

(z, u) ↦→
1

K ∗∗
|Σ |

−n/2 F∗∗
[
tr{(z − θ )Σ−1 (z − θ )⊤} + tr{Σ−1 u⊤u}

]
, (13)

where, for all t ∈ R+,

F∗(t) =
1
2

∫
∞

t
f (ν) dν and F∗∗(t) =

1
2

∫
∞

t
F∗(ν) dν . (14)

Here, the normalizing constants

K ∗
=

∫
Rpn

|Σ |
−n/2 F∗

[
tr{(z − θ )Σ−1 (z − θ )⊤} + tr{Σ−1 u⊤u}

]
dz du (15)

nd

K ∗∗
=

∫
Rpn

|Σ |
−n/2 F∗∗

[
tr{ (z − θ )Σ−1 (z − θ )⊤} + tr{Σ−1 u⊤u}

]
dz du , (16)

re assumed to be finite.

.2. The main result

Instead of the reference estimators Σ̂a = a S of Σ , we consider alternative estimators of Σ of the form Σ̂a,G =(
S + SS+G(Z, S)

)
, where a > 0, S+ denotes the Moore–Penrose inverse of S and G(Z, S) is a p × p matrix function such

hat the correction factor SS+G(Z, S) is symmetric. The performance of estimators is evaluated through the risk function

R(Σ, Σ̂) = Eθ,Σ [L(Σ, Σ̂)] , (17)

here Eθ,Σ denotes the expectation with respect to the density in (11) and L(Σ, Σ̂) is given in (4).
As mentioned in Section 2.1, we reduce the distributional context in (11) to the subclass of densities such that, for all

∈ R+,

c ≤
F∗(t)

≤ b (18)

f (t)

3
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where c and b are positive constants. These densities in (18) have been considered by Fourdrinier, Mezoued and
Strawderman [11]. They contain the multivariate normal distribution and the variance mixture of normals given in
Appendix A.1 (see [11] for further examples).

There exists ao > 0 such that Σ̂ao = ao S is optimal among the class of usual estimators Σ̂a = a S (that is, the risk of
ˆ ao is less than or equal to the risk of Σ̂a for any a > 0); this is

ao =
1

K ∗∗ (p + m + 1)
, (19)

here K ∗∗ is given in (16). See Appendix A.3 for a proof. The improvement over the class of a S’s will be shown through
he improvement of Σ̂ao,G = ao S + ao SS+ G(Z, S). We provide in the following theorem, which is the main result of this
paper, improvement conditions of ao

(
S + SS+G(Z, S)

)
over ao S. See Appendix A.3 for a proof. Note that, we will use the

Haff operator Ds{·} whose generic element is

dsij =
1
2
(1 + δij)

∂

∂Sij
, (20)

ith δij = 1 when i = j and δij = 0 when i ̸= j .

heorem 2.1. Consider a density as in (11) satisfying (18). Under the condition

tr
[
2 SS+ Ds{SS+ G(Z, S)} + (m − (p ∧ m) − 1) S+ G(Z, S)

]
≥ 0 , (21)

he estimator Σ̂ao,G = ao
(
S + SS+G(Z, S)

)
improves over Σ̂ao = ao S if

tr
[
2 S+S Ds{SS+ T ∗

}
⊤

+ (m − p ∧ m − 1) S+ T ∗

−2 (p + m + 1)
c2

b2
(
2 SS+ Ds{SS+ G(Z, S)} + (m − (p ∧ m) − 1) S+ G(Z, S)

)]
≤ 0 , (22)

here

T ∗
= 4 (S + SS+ G(Z, S))Ds{SS+ G(Z, S)} + G

(
2mSS+

− (p − m + 1) S+ G(Z, S)
)
. (23)

A consequence of the unified approach of the two cases, S invertible and S non-invertible, is that the improvement
onditions of the alternative estimators Σ̂a,G in (5) over Σ̂a in (3) are conditions on G(Z, S), which are similar in these
wo settings. This feature is illustrated by the fact that Σ̂a,G can be written as

Σ̂a,G = SS+ a
(
S + G(Z, S)

)
,

nd hence, is the projection of a (S +G(Z, S)) onto the column space of S. It is worth noting the parallel with the situation
onsidered by Chételat and Wells [6] who, estimating θ , underline the fact that their improved estimators apply shrinkage
nly on the component of Z in the subspace spanned by the column of S.

.3. A new Stein–Haff type identity

Theorem 2.1 expresses conditions on G := G(Z, S) in order that Σ̂a,G improves on Σ̂a under the quadratic risk (17),
hat is, such that the risk difference

∆(G) = R
(
Σ, a

(
S + SS+ G

))
− R (Σ , a S) (24)

s non-positive. We give in the following proposition conditions to ensure the finiteness of the risks difference (24). The
roof is deferred to Appendix A.3.

roposition 2.1. Let ∥A∥F =
√
tr(A⊤ A) be the Frobenius norm. Assume that the expectations Eθ,Σ

[
∥Σ−1 S∥2

F

]
and

Eθ,Σ
[
∥Σ−1SS+G∥

2
F

]
are finite. Then, for any a > 0, the risks of Σ̂a and Σ̂a,G are finite. In that case, the risk difference in

(24) is also finite and can be written as

∆(G) = a2 Eθ,Σ
[
tr
(
Σ−1SS+(2 S + G)Σ−1SS+ G

)]
− 2 a Eθ,Σ

[
tr
(
Σ−1 SS+ G

)]
. (25)

The dependence in (25) on the unknown parameter Σ−1 is problematic since it intervenes in the integrand terms.
As a remedy, we provide in the following lemma a new version of the so-called Stein–Haff identity in the framework of
elliptically symmetric distributions, which unifies the cases where S is singular and S is invertible. For this purpose, we
define E∗

θ,Σ as the expectation with respect to the density (12).
4
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Lemma 2.1. Let G(z, s) be a p × p matrix function such that, for any fixed z, G(z, s) is weakly differentiable with respect to
s. Assume that Eθ,Σ

[⏐⏐tr (Σ−1S S+ G
) ⏐⏐] < ∞. Then we have

Eθ,Σ
[
tr
(
Σ−1 SS+ G

)]
= K ∗ E∗

θ,Σ

[
tr
(
2 SS+ Ds{SS+G}

⊤
+ (m − (p ∧ m) − 1) S+ G

) ]
. (26)

See Appendix A.3 for the proof. Note that, in the case where S is invertible (p ≤ m), since S+
= S−1, Identity (26)

orresponds to

Eθ,Σ
[
tr
(
Σ−1G

)]
= K ∗E∗

θ,Σ

[
tr
(
2Ds{G}

⊤
+ (m − p − 1) S−1 G

)]
,

hich is the identity given by Kubokawa and Srivastava [24]. In the singular case, Identity (26) becomes

Eθ,Σ
[
tr
(
Σ−1 SS+ G

)]
= K ∗E∗

θ,Σ

[
tr
(
2 SS+ Ds{SS+ G}

⊤
− S+G

)]
,

hich is, to our knowledge, a new Stein–Haff type identity.
Although Lemma 2.1 allows to get rid of Σ−1 in the second term on the right-hand side of (25), thanks to the E∗

θ,Σ -
xpectation, note that it appears twice in the first term. We can deal with this by applying Lemma 2.1 twice, which gives
ise to the following corollary through the E∗∗

θ,Σ - expectation with respect to the density (13).

Corollary 2.1. Let G(z, s) and V (z, s) be p×p matrices function such that, for any fixed z , G(z, s) and V (z, s) are weakly differ-
ntiable with respect to s. With V := V (Z, S), assume that SS+V is symmetric and such that Eθ,Σ

[⏐⏐tr (Σ−1SS+VΣ−1SS+G
) ⏐⏐] <

∞. Assume also that E∗

θ,Σ

[⏐⏐tr (Σ−1SS+T ∗
) ⏐⏐] < ∞. Then we have

Eθ,Σ
[
tr
(
Σ−1SS+VΣ−1SS+G

)]
= K ∗K ∗∗E∗∗

θ,Σ

[
tr
(
2SS+Ds{SS+T ∗

}
⊤

+ (m − (p ∧ m) − 1)S+T ∗
)]

(27)

with

T ∗
= 2

[
SS+ V Ds{SS+ G}

⊤
+ SS+ GDs{SS+ V }

]
− (p − m + 1)G S+ V .

See Appendix A.3 for the proof. Identity (27) parallels (26) as the role of the density (11) (respectively, the role of the
xpectation Eθ,Σ ) is played by the density (12) (respectively, the role of the expectation E∗

θ,Σ ) so that we have, for any
× p matrix H(z, s) weakly differentiable with respect to s such that E∗

θ,Σ

[⏐⏐tr (Σ−1SS+ H
) ⏐⏐] < ∞,

E∗

θ,Σ

[
tr
(
Σ−1SS+H

)]
= K ∗∗E∗∗

θ,Σ

[
tr
(
2 S+S Ds{SS+H}

⊤
+ (m − (p ∧ m) − 1)S+H

)]
.

Now we can give an expression of the risk difference ∆(G) in (25) which does not involve the unknown parameter
Σ−1 in the integrand term and which relies on Lemma 2.1 and Corollary 2.1. It is worth noticing that the conditions we
will use to this end imply those expressed in Lemma 2.1 and Corollary 2.1.

Proposition 2.2. Let G(z, s) be p × p matrices function such that, for any fixed z, G(z, s) is weakly differentiable with respect
to s. Assume that the correction factor SS+G is symmetric. Assume also that Eθ,Σ

[
∥Σ−1 S∥2

F

]
< ∞, Eθ,Σ

[
∥Σ−1SS+G∥

2
F

]
< ∞

and E∗

θ,Σ

[⏐⏐tr (Σ−1SS+T ∗
) ⏐⏐] < ∞. Then

∆(G) = a2 K ∗ K ∗∗ E∗∗

θ,Σ

[
tr
(
2 SS+ Ds{SS+ T ∗

}
⊤

+ (m − (p ∧ m) − 1) S+ T ∗
)]

− 2 a K ∗ E∗

θ,Σ

[
tr
(
2 S+S Ds{SS+ G} + (m − (p ∧ m) − 1) S+G

)]
(28)

here

T ∗
= 4 (S + SS+ G)Ds{SS+ G} + G

(
2mSS+

− (p − m + 1) S+ G
)
. (29)

Proof. Recall that the conditions Eθ,Σ
[
∥Σ−1 S∥2

F

]
< ∞ and Eθ,Σ

[
∥Σ−1SS+G∥

2
F

]
< ∞ guarantee the finiteness of

the risk difference of Σ̂a and Σ̂a,G. Note that the second finiteness risk condition implies the condition in Lemma 2.1
Eθ,Σ

[⏐⏐tr (Σ−1S S+ G
) ⏐⏐] < ∞ since, by the Cauchy–Schwarz inequality

Eθ,Σ
[⏐⏐tr (Σ−1S S+ G

) ⏐⏐] = Eθ,Σ
[⏐⏐tr (IpΣ−1S S+ G

) ⏐⏐] ≤ p1/2 Eθ,Σ
[
∥tr
(
Σ−1S S+ G

)
∥
2
F

]
.

Similarly, note also that these conditions imply, with the condition E∗

θ,Σ

[⏐⏐tr (Σ−1SS+T ∗
) ⏐⏐] < ∞, the conditions in

Corollary 2.1 with T ∗ in (29). In particular, for V = 2 S + G, we have Eθ,Σ
[⏐⏐tr (Σ−1SS+VΣ−1SS+G

) ⏐⏐] < ∞.
Then, applying Lemma 2.1 to the second expectation in (25) and Corollary 2.1 to the first one with V = 2 S + G gives

(28), since

T ∗
= 2

[
SS+ (2 S + G)Ds{SS+ G} + SS+ GDs{SS+ (2 S + G)}

]
− (p − m + 1)G S+ (2 S + G)

= 4 (S + SS+ G)Ds{SS+ G} + 4G SS+ Ds{S} − (p − m + 1) (2G SS+
+ G S+ G)

= 4 (S + SS+ G)Ds{SS+ G} + G
(
2mSS+

− (p − m + 1) S+ G
)
,

where we used (A.63), the fact that SS+(I − SS+) = 0 and the symmetry of SS+ G. □
p p×p

5
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As it is well known, the usual estimators of Σ are inappropriate in so far as the largest (smallest) eigenvalues of Σ̂a
end to be larger (smaller) than the corresponding eigenvalues of Σ . This fact suggests that the eigenvalues of Σ̂a be
hrunk toward a central value, which gives rise to an orthogonally invariant estimator. Theorem 2.1 is well adapted to
eal with this class of estimators.

. Orthogonally invariant estimators

In this section, we propose competitive estimators of the scale matrix Σ through the eigenvalue decomposition of
. For that purpose, we set some notations. Let Op be the group of p × p orthogonal matrices, and when p ≥ r , let
p,r = {A ∈ Rp×r

: A⊤A = Ir} the Stiefel manifold of semi-orthogonal matrices. Note that Op = Lp,p. Also define Dr as the
et of r × r diagonal matrices diag(d1, . . . , dr ) such that d1 > · · · > dr > 0. In this context, let

S = H1 L H⊤

1

e the eigenvalue decomposition of S, where H1 ∈ Lp,p∧m and L ∈ Dp∧m.
We consider the subclass of alternatives estimators Σ̂a,G = a

(
S + SS+G(Z, S)

)
in (5) that are orthogonally invariant:

that is, such that

G = H1 Ψ (L)H⊤

1 ,

for some function Ψ (L) ∈ Dp∧m differentiable with respect to L. Note that SS+ G = G, and hence, these estimators can be
expressed as

Σ̂a,Ψ = a H1
(
L + Ψ (L)

)
H⊤

1 . (30)

In (30), the function Ψ (L) modifies the eigenvalues in L. In the Gaussian context, Stein [29], Dey and Srinavasan [7],
Haff [16], Kubokawa et al. [23], Ledoit and Wolf [25], Fisher and Sun [10] use such modifications. We give in the following
corollary general conditions on Ψ := Ψ (L), in the elliptically symmetric framework, for such estimators to improve over
Σ̂a.

Corollary 3.1. Consider a density as in (11) satisfying (18). Provided that

p∧m∑
i=1

⎧⎨⎩(p + m − 2 (p ∧ m) − 1
) ψi

li
+ 2

∂ψi

∂ li
+

p∧m∑
j̸=i

ψi − ψj

li − lj

⎫⎬⎭ ≥ 0 , (31)

he estimator Σ̂ao,Ψ = ao H1 diag
(
l1 + ψ1, l2 + ψ2, . . . , lp∧m + ψp∧m

)
H⊤

1 improves over the optimal estimator Σ̂ao =

o H1 diag
(
l1, l2, . . . , lp∧m

)
H⊤

1 if

p∧m∑
i=1

⎧⎨⎩(p + m − 2 (p ∧ m) − 1)
φi

li
+ 2

∂φi

∂ li
+

p∧m∑
j̸=i

φi − φj

li − lj

−2 (p + m + 1)
c2

b2

⎛⎝(p + m − 2 (p ∧ m) − 1
) ψi

li
+ 2

∂ψi

∂ li
+

p∧m∑
j̸=i

ψi − ψj

li − lj

⎞⎠⎫⎬⎭ ≤ 0 , (32)

here

φi = 2 (p + m − p ∧ m)ψi + (p + m − 2 (p ∧ m) − 1)
ψ2

i

li
+ 4 (ψi + li)

∂ψi

∂ li
+ 2 (ψi + li)

p∧m∑
j̸=i

ψi − ψj

li − lj
. (33)

roof. Using the eigenvalue decomposition of S, it is clear that S+
= H1 L−1 H⊤

1 , SS+
= H1 H⊤

1 , SS+G = G = H1 Ψ H⊤

1 and
+G = H1 L−1 Ψ H⊤

1 . In this setting, Condition (21) in Theorem 2.1 becomes

tr
[
2H1 H⊤

1 Ds{H1 Ψ H⊤

1 }(m − (p ∧ m) − 1)H1 L−1 Ψ H⊤

1

]
≥ 0.

pplying Identity (A.62) and using the fact that H⊤

1 H1 = Ip∧m and H⊤

1 (Ip − H1H⊤

1 ) = 0(p∧m)×p, this can be written as

tr
[
2Ψ (1)

+ (m − (p ∧ m) − 1) L−1 Ψ
]

≥ 0 (34)

here Ψ (1)
∈ Dp∧m with

ψ
(1)
i =

1
2
(p − p ∧ m)

ψi

li
+
∂ψi

∂ li
+

1
2

p∧m∑
j̸=i

ψi − ψj

li − lj
,

which is (31).
6
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As for Condition (22) in Theorem 2.1, note that T ∗ in (23) is expressed as

T ∗
= 4H1 (L + Ψ )H⊤

1 Ds{H1 Ψ H⊤

1 } + H1
(
2mΨ − (p − m + 1)Ψ 2 L−1) H⊤

1 .

pplying Identity (A.62) and using the facts that H1 H⊤

1 = Ip∧m and H⊤

1 (Ip − H1H⊤

1 ) = 0(p∧m)×(p∧m) , it follows that

T ∗
= H1

(
2mΨ + 4 (Ψ + L)Ψ (1)

− (p − m + 1)Ψ 2 L−1) H⊤

1 = H1Φ H⊤

1 ,

where Φ ∈ Dp∧m whose generic term is given in (33). Similarly to Condition (21), we apply Identity (A.62) with G = T ∗

to obtain

tr
[
2 S+S Ds{SS+ T ∗

} + (m − (p ∧ m) − 1) S+ T ∗
]

= tr
[
2Φ (1)

+ (m − (p ∧ m) − 1) L−1Φ
]
, (35)

here Φ(1)
∈ Dp∧m with

φ
(1)
i =

1
2
(p − p ∧ m)

φi

li
+
∂φi

∂ li
+

1
2

p∧m∑
j̸=i

φi − φj

li − lj
.

Finally the desired result follows from (34) and (35). □

4. Examples

4.1. Haff type estimator

The following proposition provides an example of function Ψ (L) reducing to the estimator proposed by Haff [15] in
he Gaussian context and in the case where S is invertible.

roposition 4.1. Consider a density as in (11) satisfying (18) and let p and m satisfy

p + m − (p ∧ m) + 2
p + m + 1

≤
c2

b2
≤

2 p + 2m − 5 (p ∧ m) − 3
p + m + 1

. (36)

et Σ̂ao,Ψ be an estimator of the form

Σ̂ao,Ψ = ao H1 diag
(
l1 + ν t(ν), l2 + ν t(ν), . . . , lp∧m + ν t(ν)

)
H⊤

1 , (37)

ith ν = 1/tr(S+) and t(·) a twice differentiable non-increasing convex function. Then Σ̂ao,Ψ improves upon Σ̂ao if

(i) (p + m − 2 (p ∧ m) + 1) t(ν) + 2 ν t ′(ν) ≥ 0

(ii) 0 ≤ t(ν) ≤
2 (p + m − 2 (p ∧ m) − 1)

(
(p + m + 1) c2/b2 − p − m + (p ∧ m) − 2

)
(p + m − 2 (p ∧ m) + 1)(p + m − 2 (p ∧ m) + 3)

(iii)
{
2 (p + m − 4 (p ∧ m) + 3) t(ν) + 2 ν t ′(ν) +

[
2 p + 2m − 5 (p ∧ m) + 5 − (p + m + 1)

c2

b2

]}
t ′(ν)

+ 2
{
t(ν) + (p ∧ m)2

}
ν t ′′(ν) ≤ 0 .

The proof of Proposition 4.1 is given in Appendix A.2. Although these conditions seem to be involved, a simple example
s given by t(ν) = α/(β + ν), where α > 0 and β > 0. Clearly t ′(ν) = −1/(β + ν) t(ν) = −α/(β + ν)2 and
′′(ν) = 2/(β + ν)2 t(ν) = 2α/(β + µ)3. Therefore, Condition (i) in Proposition 4.1 becomes{

p + m − 2 (p ∧ m) + 1 − 2
ν

β + ν

}
t(ν) ≥ 0,

hich is satisfied if p + m − 2 (p ∧ m) ≥ 1 since
ν

β + ν
≤ 1 . (38)

As for Condition (ii), note that 0 ≤ t(ν) ≤ t(0) = α/β . Hence (ii) is satisfied if

α

β
≤ t1(p,m) =

2 (p + m − 2 (p ∧ m) − 1)
(
(p + m + 1) (c2/b2) − p − m + p ∧ m − 2

)
(p + m − 2 (p ∧ m) + 1)(p + m − 2 (p ∧ m) + 3)

.

Now, Condition (iii) is equivalent to{
6

ν

β + ν
− 2 (p + m − 4 (p ∧ m) + 3)

}
1

β + ν
t2(ν)

+

{
4 (p ∧ m)2

ν
−

(
2 p + 2m − 5 (p ∧ m) + 5 − (p + m + 1)

c2
2

)}
1

t(ν) ≤ 0 .

β + ν b β + ν

7
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According to (38), we have{
−2

(
p + m − 4 (p ∧ m)

)
t(ν) + 4 (p ∧ m)2 −

(
2 p + 2m − 5 (p ∧ m) + 5 − (p + m + 1)

c2

b2

)}
1

β + ν
t(ν) ≤ 0.

Now, using the fact that t(ν) ≥ 0, the last condition is satisfied if

t(ν) ≤ t2(p,m) =
(p + m + 1)(c2/b2) + 4 (p ∧ m)2 − 2 p − 2m + 5 (p ∧ m) − 5

2 (p + m − 4 (p ∧ m))
,

hich holds if β−1α ≤ t2(p,m) , since t(ν) ≤ t(0) = α/β .
Finally, choosing α/β ≤ t1(p,m) ∧ t2(p,m) implies that Conditions (ii) and (iii) in Proposition 4.1 are both satisfied.
As mentioned by Haff [15], even in the Gaussian framework and in the non-singular case, calculations under the

uadratic loss in (4) are difficult. It is thus noteworthy that the above results hold for the considerably more general
ase of elliptically symmetric distributions, singular or non-singular S, and for a more general class of functions t(·).

.2. The Konno estimator

The Konno estimator, proposed in [22] in the Gaussian setting, is a particular case of the estimator in (37); the function
(·) is constant. Thus it is of the form

Σ̂KO = ao
(
S + ν t H1 H⊤

1

)
=

1
K ∗∗(p + m + 1)

H1 diag
(
l1 + ν t, l2 + ν t, . . . , lp∧m + ν t

)
H⊤

1 , (39)

here t > 0 and ν = 1/tr(S+) . As t is a constant, Condition (36) in Proposition 4.1 reduces to

p + m − (p ∧ m) + 2
p + m + 1

≤
c2

b2
,

since Condition (iii) is automatically satisfied (its left-hand side is zero, and hence, the second inequality in (36) does not
intervene). Also Condition (i) is

p + m − 2 (p ∧ m) + 1 ≥ 0 .

Therefore the Konno estimator in (39) improves over the usual optimal estimator

Σ̂ao = ao S =
1

K ∗∗(p + m + 1)
H1 diag

(
l1, l2, . . . , lp∧m

)
H⊤

1 ,

f

0 ≤ t ≤ tmax =
2 (p + m − 2 (p ∧ m) − 1)

(
(p + m + 1)c2/b2 − p − m + (p ∧ m) − 2

)
(p + m − 2 (p ∧ m) + 1)(p + m − 2 (p ∧ m) + 3)

. (40)

. Numerical study

In this section, we report experiments designed to assess the behavior of the Konno’s estimator in (39) with t = tmax
n (40). We deal with two densities in the subclass (18). First, we consider the multivariate normal distribution for which
= b = 1 and K ∗

= K ∗∗
= 1. Secondly, we carry on with the variance mixture of normals with a beta distribution as

ixing distribution. More specifically, the function f (·) in (11) has the form, for any t ≥ 0,

f (t) =

∫ 1

0

1
(2vπ )np/2

exp
(

−t
2v

)
h(v) dv where ∀ v ∈ [0, 1] h(v) =

Γ (α + β)
Γ (α)Γ (β)

vα−1 (1 − v)β−1 , (41)

ith α > np/2 and β > 0 and close to zero. It is seen in Appendix A.1 that c = (α − np/2)/(α − np/2 + β), b = 1 and
∗∗

=
(
αβ + α2 (α+ β + 1)

)
/
(
(α+ β)2 (α+ β + 1)

)
. As in our example, the corrected factor SS+G(Z, S) depends only on

= U⊤ U where U is n × p matrix, in the above conditions, the role of n is played by m.
We carry out simulations for the following structures of the invertible scale matrix Σ:

(i) Ip;
(ii) the p × p matrix where the (i, j)th element is 0.9|i−j|;
(iii) diag(100, 1001−1/p, . . . , 1001−(p−1)/p).

ote that Case (ii) has an autoregressive structure with coefficient 0.9. Also, Case (iii) corresponds to a heteroscedastic
cale matrix for which the diagonals elements are widely scattered: the largest diagonal element is about hundredfold of
he smallest one. To assess how Σ̂KO improves over Σ̂ao , we compute, for each structure of Σ , the Percentage Reduction
n Average Loss (PRIAL) defined as

PRIAL(Σ̂KO) =
average loss of Σ̂ao − average loss of Σ̂KO

.

average loss of Σ̂ao

8
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Table 1
PRIAL’s (%) of Σ̂KO for the Gaussian and the beta mixture distributions. The non-invertible (p > m) and the invertible (p ≤ m) cases are considered
for the structures (i), (ii) and (iii) of Σ .
Σ p m Gaussian Mixture m p Gaussian Mixture

25
10 1.09 1.01

25
10 6.52 5.96

(i) 15 1.88 1.79 15 5.10 4.84
20 1.94 1.88 20 3.07 2.88

100
40 0.39 0.37

100
40 2.45 2.29

60 0.75 0.71 60 2.07 1.97
80 1.04 1.00 80 1.62 1.56

25
10 1.04 0.96

25
10 6.25 5.72

(ii) 15 1.84 1.75 15 4.99 4.75
20 1.94 1.87 25 3.06 2.87

100
40 0.39 0.36

100
40 2.42 2.26

60 0.74 0.70 60 2.06 1.95
80 1.03 0.99 80 1.62 1.56

25
10 1.04 0.97

25
10 5.91 5.42

(iii) 15 1.81 1.73 15 4.86 4.61
20 1.94 1.87 20 3.03 2.85

100
40 0.39 0.36

100
40 2.37 2.22

60 0.74 0.70 60 2.03 1.93
80 1.03 0.99 80 1.61 1.55

Fig. 1. Effect of t on the PRIAL for (p,m) = (25, 10).

Table 1 shows the PRIAL’s based on 1000 independent replications for some couples (p,m) where we deal both with
he non-invertible case (p > m, second and third columns) and the invertible case (p ≤ m, sixth and seventh columns).
he first column displays the three structures (i), (ii) and (iii) of Σ . The fourth and eighth columns correspond to the
imulations under the Gaussian distribution N (0, Im ⊗Σ) while the fifth and the ninth columns correspond to the mixing
istribution in (41) with α = mp/2 + 0.1 and β = 10−4.
It is observed that the PRIAL’s are better when Σ = Ip and coincide with the simulation results of Konno [22] for the

aussian setting when p > m. For a fixed p, the PRIAL’s increase with m and, inversely, decrease with p for a fixed m.
ote that, the PRIAL’s are better in the invertible case (p ≤ m) with respect to the non-invertible case (p > m). Also, note
hat, for all considered structures of Σ , the PRIAL’s are slightly better in the Gaussian setting.

Finally, we investigate in the Gaussian framework the effect of the constant t in (40) on the PRIAL. Fig. 1 provides the
raphic of the PRIAL as a function of t when the scale matrix is Σ = Ip and (p,m) = (25, 10).
We observe that, when 0 < t ≤ tmax ≈ 0.875, there is improvement of Σ̂KO over Σ̂ao , while, when t < 0, there

s no improvement. It is worth noting that, when t > tmax, there still exists improvement. The PRIAL increases till
approximately) 4.20% at t ≈ 5.66 and then decreases till 0 at t ≈ 11.29. Thus, it appears that the Konno class of
mproved estimators in (39) is larger than in our approach.

. Conclusions and perspectives

In this paper, we address the problem of estimating the scale matrix Σ of an elliptically symmetric distribution
elonging to a subclass which is reminiscent of the Berger class [1]. We derive dominance results for estimators of the
orm a (S + SS+ G(Z, S)) over the usual estimators a S under quadratic loss. Thanks to a new Stein–Haff type identity,
ur approach unifies the cases where S is invertible and S is singular. Results on eigenstructure of S allow to provide
eneral examples of improved orthogonally invariant estimators which extend the results in Haff [17] and Konno [22].
9
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Note that, as Σ−1 naturally intervenes in the parameterization of the density (11), estimating Σ is often more difficult
than estimating Σ−1.

A natural extension of this work would be to determine examples of improved estimators which are not orthogonally
invariant. We have already obtained such examples when S is invertible and we plan to tackle this question when S
is singular. Also, calculations under the quadratic loss L(Σ, Σ̂) = tr(Σ−1 Σ̂ Σ−1 Σ̂) − 2 tr(Σ−1 Σ̂) + p are difficult
and give rise to complicated improvement conditions. This is due to the presence of the unknown parameter Σ−1 in
tr(Σ−1 Σ̂ Σ−1 Σ̂), which requires a dual application of the Stein–Haff type identity (26). A more suitable loss function
would be the data-based loss (also called intrinsic loss)

LS(Σ, Σ̂) = tr(S+Σ−1 (Σ−1Σ̂ − Ip)2) = tr(Σ−1 Σ̂ S+ Σ̂) − 2 tr(S+ Σ̂) + tr(S+Σ),

considered by Tsukuma and Kubokawa [32]. In fact, using this loss implies only one application of the Stein–Haff type
identity to get rid of Σ−1. This may lead to more simple improvement conditions.
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Appendix

A.1. A subclass of elliptically symmetric distributions

Numerous densities in (11) satisfying Condition (18) are given in Fourdrinier, Mezoued and Strawderman [11]; they
contain the multivariate normal density. As an example of interest for us, we consider the variance mixture of normal
distributions where the mixing variable V has a beta distribution with parameters α > 0 and β > 0. Thus, the generating
function f in (11) has, for any t ≥ 0, the form

f (t) =

∫ 1

0

1
(2vπ )np/2

exp
(

−t
2v

)
h(v) dv (A.1)

here, for any 0 ≤ v ≤ 1,

h(v) =
Γ (α + β)
Γ (α)Γ (β)

vα−1 (1 − v)β−1.

Then, the primitive F∗ of f in (14) is, for any t ≥ 0,

F∗(t) =
1
2

∫
∞

t

∫ 1

0

1
(2vπ )np/2

exp
(

−w

2v

)
h(v) dv dw =

1
2

∫ 1

0

1
(2vπ )np/2

∫
∞

t
exp

(
−w

2v

)
dw h(v) dv

=

∫ 1

0

v

(2vπ )np/2
exp

(
−t
2v

)
h(v) dv . (A.2)

ollowing the same lines, the primitive F∗∗ of F∗ in (14) is, for any t ≥ 0,

F∗∗(t) =

∫ 1

0

v2

(2vπ )np/2
exp

(
−t
2v

)
h(v) dv . (A.3)

As for the normalizing constant K ∗ in (15), according to (A.2), we have

K ∗
=

∫
Rpn

∫ 1

0

|Σ |
−n/2

(2vπ )np/2
v exp

(
−1
2v

[
tr{(z − θ )Σ−1 (z − θ )⊤} + tr{Σ−1 u⊤u}

])
h(v) dv dz du

=

∫ 1

0
v

∫
Rpn

|Σ |
−n/2

(2 vπ )np/2
exp

(
−1
2v

[
tr{(z − θ )Σ−1 (z − θ )⊤} + tr{Σ−1 u⊤u}

])
dz du h(v) dv

=

∫ 1

v h(v) dv =
α

.

0 α + β

10
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Similarly, according to (A.3), the normalizing constant K ∗∗ in (16) is

K ∗∗
=

∫ 1

0
v2
∫
Rpn

|Σ |
−n/2

(2vπ )np/2
exp

(
−1
2v

tr
[
tr{(z − θ )Σ−1 (z − θ )⊤} + tr{Σ−1 u⊤u}

])
dz du h(v) dv

=

∫ 1

0
v2 h(v) dv =

α β + α2(α + β + 1)
(α + β)2 (α + β + 1)

.

As we deal with a variance mixture of normals, the ratio F∗(t)/f (t) is non-decreasing in t (see Fourdrinier, Strawderman
nd Wells [13]). Hence c and b in (18) are, c = F∗(0)/f (0) and b = limt→∞ F∗(t)/f (t). Also, from (A.1) and (A.2) we have,

F∗(t)
f (t)

=

∫ 1
0 v

α−np/2 (1 − v)β−1 exp
(

−t
2v

)
dv∫ 1

0 v
α−np/2−1 (1 − v)β−1 exp

(
−t
2v

)
dv

≤ 1,

o that, b = 1. As for c , if α > np/2, we have

c =
F∗(0)
f (0)

=

∫ 1
0 v

α−np/2 (1 − v)β−1 dv∫ 1
0 v

α−np/2−1 (1 − v)β−1 dv
=

α − np/2
α − np/2 + β

,

s a ratio of beta functions.
While, in the multivariate normal case c = b = 1 since F∗∗

= F∗
= f , and hence, the expectations Eθ,Σ , E

∗

θ,Σ , E
∗∗

θ,Σ

oincide, in the elliptical setting, these expectations are related since, for any integrable function H(Z,U), we have

K ∗ E∗

θ,Σ [H(Z,U)] = Eθ,Σ [ϕ∗

θ,Σ (Z,U)H(Z,U)] (A.4)

and

K ∗∗ E∗∗

θ,Σ [H(Z,U)] = K ∗E∗

θ,Σ [ϕ∗∗

θ,Σ (Z,U)H(Z,U)] = Eθ,Σ [ϕ∗∗

θ,Σ (Z,U)ϕ∗

θ,Σ (Z,U)H(Z,U)] (A.5)

where, for any z ∈ Rq×p and u ∈ Rm×p,

ϕ∗

θ,Σ (z, u) =
F∗(ν)
f (ν)

and ϕ∗∗

θ,Σ (z, u) =
F∗∗(ν)
F∗(ν)

, with ν = tr{(z − θ )Σ−1 (z − θ )⊤} + tr{Σ−1 u⊤u}. (A.6)

The following lemma is helpful to deal with the dependence of the risk difference in (A.51) with respect to the unknown
parameters θ and Σ in ϕ∗

θ,Σ (z, u) and ϕ
∗∗

θ,Σ (z, u).

Lemma A.1. In the context of (A.6), assume that there exist two positives constant c and b such that for all t ∈ R+

c ≤
F∗(t)
f (t)

≤ b . (A.7)

hen we have
1
b2

≤
1

K ∗ϕ∗∗

θ,Σ (z, u)
≤

1
c2
, (A.8)

here K ∗ is given in (15).

roof. By definition of F∗∗(·) and F∗(·) in (14) and (14), we have for all t ∈ R+

F∗(t)
F∗∗(t)

=

(∫
∞

t
F∗(w) dw

)−1 ∫ ∞

t

f (w)
F∗(w)

F∗(w) dx = Et

[
f (W )
F∗(W )

]
,

where Et is the expectation with respect to the density proportional to F∗(w) 1[t,∞[(w). Hence, according to (A.6) and (A.7)
ith t = ν, we have

1
b

≤
1

ϕ∗∗

θ,Σ (z, u)
= Eν

[
f (W )
F∗(W )

]
≤

1
c
. (A.9)

Moreover, setting H(Z,U) ≡ 1 in (A.4), we have, according to (A.6) and by assumption (A.7), c ≤ K ∗
≤ b. Therefore

1/b ≤ 1/K ∗
≤ 1/c and (A.9) gives (A.8). □

A.2. Matrix calculations

In this appendix, for completeness, we give a proof of some known results relative to the Haff operator Ds{·} defined
in (20) and to the trace of S and S+. We also give here the proof of Proposition 4.1.
11
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Proposition A.1. Let A, B and C be p × p matrix functions of S. Assuming that all partial derivatives and products exist as
needed, we have

Ds {A B} = Ds {A} B +
(
A⊤ DS

)⊤
{B} (A.10)

tr
[
C (A⊤ Ds)⊤ {B}

]
= tr

[
A⊤ (C Ds)⊤ {B}⊤

]
(A.11)

roof. The first identity was given by Haff [14,15], so that we only give the proof of (A.11). We have

tr
[
C (A⊤Ds)⊤{B}

]
=

p∑
i,j,k

Cij(A⊤Ds)⊤jkBki =

p∑
i,j,k

Cij(A⊤Ds)kjB⊤

ik .

hen, by symmetry of Ds{·},

tr
[
C (A⊤Ds)⊤{B}

]
=

p∑
i,j,k,l

A⊤

klCijdjlB⊤

ik =

p∑
k,l,i

A⊤

kl (CDs)⊤li B
⊤

ik = tr
[
A⊤ (C Ds)⊤ {B}⊤

]
. □

The following lemmas rely on the eigenvalue decomposition of S recalled in the beginning of Section 3.

emma A.2. Let ρk = tr(S+k)/trk(S+). Then, for k ∈ {2, 3, 4, . . . },

(p ∧ m)1−k
≤ ρk ≤ ρk−1 ≤ 1 . (A.12)

Proof. First, we show that ρk is non-increasing in k. As S+
= H1L−1H⊤

1 , we have

tr(S+k) = tr(L−k) =

p∧m∑
i=1

1
lki

≤

p∧m∑
i=1

1
lk−1
i

p∧m∑
j=1

1
lj

= tr(S+(k−1))tr(S+).

ence

ρk =
tr(S+k)
trk(S+)

≤
tr(S+(k−1))
trk−1(S+)

= ρk−1. (A.13)

Secondly, setting k = 2 in (A.13) gives ρ2 ≤ 1. Now, from the Hölder inequality, it follows that, for k ∈ {2, 3, 4, . . . }

tr
(
L−1 Ip∧m

)
≤
(
tr(L−k)

)1/k
(p ∧ m)(k−1)/k.

Then

trk(L−1) ≤ tr(L−k) (p ∧ m)k−1 , and hence, (p ∧ m)1−k
≤

tr(L−k)
trk(L−1)

=
tr(S+k)
trk(S+)

= ρk. □

emma A.3. The following inequalities hold:

− 4 (p ∧ m) tr(S+3) <
p∧m∑
i=1

p∧m∑
j̸=i

l−2
i − l−2

j

li − lj
< 0, (A.14)

nd

− 2 (p ∧ m) tr(S+2) <
p∧m∑
i=1

p∧m∑
j̸=i

l−1
i − l−1

j

li − lj
< 0 . (A.15)

roof. As S+
= H1 L−1 H⊤

1 = H1 diag(l−1
1 , l−1

2 , . . . , l−1
p∧m)H

⊤

1 , we have
p∧m∑
i=1

p∧m∑
j̸=i

l−2
i − l−2

j

li − lj
= 2

p∧m∑
i=1

p∧m∑
j>i

l−2
i − l−2

j

li − lj
= −2

p∧m∑
i=1

p∧m∑
j>i

[
1
li l2j

+
1
l2i lj

]
,

which is non-positive. As for j > i, we have l−1
i < l−1

j and l−2
i < l−2

j , then

m∑ p∧m∑ l−2
i − l−2

j

li − lj
> −4

p∧m∑ p∧m∑ 1
l3

= −4
p∧m∑⎡⎣p∧m∑ 1

l3
−

p∧m∑ 1
l3

⎤⎦ .

i=1 j̸=i i=1 j>i j i=1 j=1 j j≤i j

12
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Now, since
∑p∧m

i=1
∑p∧m

j≤i l−3
j > 0, we have

p∧m∑
i=1

p∧m∑
j̸=i

l−2
i − l−2

j

li − lj
> −4

p∧m∑
i=1

p∧m∑
j=1

1
l3j

= −4 (p ∧ m) tr(S+3),

which is (A.14).
Similarly, dealing with (A.15), we have

p∧m∑
i=1

p∧m∑
j̸=i

l−1
i − l−1

j

li − lj
= −2

p∧m∑
i=1

p∧m∑
j>i

1
li lj

> −2
p∧m∑
i=1

p∧m∑
j>i

1
l2j

= −2
p∧m∑
i=1

⎡⎣p∧m∑
j=1

1
l2j

−

p∧m∑
j≤i

1
l2j

⎤⎦ .
Hence, using the fact that

∑p∧m
i=1

∑p∧m
j≤i l−2

j > 0 gives the desired result in (A.15). □

Proof of Proposition 4.1. The proof consists in proving Conditions (31) and (32) in Corollary 3.1 for Ψ = ν t(ν) Ip∧m,
here ν = 1/tr(S+) and t(·) is a twice differentiable non-increasing convex function. Note that Condition (36) holds if
nd only if p + m − (p ∧ m) + 2 ≤ 2 p + 2m − 5 (p ∧ m) − 3 which is equivalent to

p + m ≥ 4 (p ∧ m) + 5.

Let ρk = νk tr(S+k). In this setting, Condition (31) is equivalent to
p∧m∑
i

{
(p + m − 2 (p ∧ m) − 1)

ν t(ν)
li

+ 2
∂{ν t(ν)}
∂ li

}
≥ 0. (A.16)

sing the fact that, for r, k ∈ {0, 1, 2, . . . }

∂

∂ li

{
νk

lri

}
= k

νk+1

lr+2
i

− r
νk

lr+1
i

and
∂

∂ li
{t(ν)} =

ν2

l2i
t ′(ν) . (A.17)

ondition (A.16) becomes

(p + m − 2 (p ∧ m) − 1) t(ν) + 2 ρ2 t(ν) + 2 ρ2 ν t ′(ν) ≥ 0 . (A.18)

hanks to the second Inequality in (A.12), this condition is satisfied if Condition (i) holds.
Dealing with Condition (32), we also use (A.17) to express (33) as

φi =

{
4
ν3

l2i
+ (p + m − 2 (p ∧ m) − 1)

ν2

li

}
t2(ν) + 2

{
2
ν2

li
+ ν (p + m − p ∧ m)

}
t(ν) + 4

{
ν3

l2i
t(ν) +

ν2

li

}
ν t ′(ν).

hen, it follows that

p∧m∑
i

φi

li
= {4 ρ3 + (p + m − 2 (p ∧ m) − 1) ρ2} t2(ν) + 2 {2 ρ2 + (p + m − p ∧ m)} t(ν) + 4 {ρ3 t(ν) + ρ2} ν t ′(ν)

(A.19)

nd
p∧m∑
i

p∧m∑
j̸=i

φi − φj

li − lj
=

⎧⎨⎩4 ν3
p∧m∑
i

p∧m∑
j̸=i

l−2
i − l−2

j

li − lj
+ (p + m − 2 (p ∧ m) − 1) ν2

p∧m∑
i

p∧m∑
j̸=i

l−1
i − l−1

j

li − lj

⎫⎬⎭ t2(ν)

+ 4 ν2
p∧m∑
i

p∧m∑
j̸=i

l−1
i − l−1

j

li − lj
t(ν) + 4

⎧⎨⎩ν3 t(ν)
p∧m∑
i

p∧m∑
j̸=i

l−2
i − l−2

j

li − lj
+ ν2

p∧m∑
i

p∧m∑
j̸=i

l−1
i − l−1

j

li − lj

⎫⎬⎭ ν t ′(ν) . (A.20)

oreover, using (A.17) repeatedly gives
p∧m∑
i

∂φi

∂ li
= {12 ρ4 + 2 (p + m − 2 (p ∧ m) − 5) ρ3 − (p + m − 2 (p ∧ m) − 1) ρ2} t2(ν)

+ 2 {4 ρ3 + (p + m − (p ∧ m) − 2) ρ2} t(ν) + 4 {ρ4 t(ν) + ρ3} ν
2 t ′′(ν)

+ 2
{
2 ρ4 ν t ′(ν) + 12ρ4 t(ν) + (p + m − 2 (p ∧ m) − 5) ρ3 t(ν) + 16ρ3

+(p + m − (p ∧ m) − 2)ρ2} νt ′(ν). (A.21)
13
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Substituting (A.19), (A.20), (A.21) and the left-hand side of (A.18) on the left-hand side of Condition (32), this last condition
can be expressed as

H1(z, u) + H2(z, u) ≤ 0 (A.22)

where

H1(z, u) = 2 {12 ρ4 + 2 (p + m − 2 (p ∧ m) − 5)ρ3 − (p + m − 2 (p ∧ m) − 1) ρ2} t2(ν)

+ (p + m − 2 (p ∧ m) − 1) {(p + m − 2 (p ∧ m) − 1) ρ2 + 4 ρ3} t2(ν)

+ 2
{
(p + m − 2 (p ∧ m) − 1)

(
p + m − (p ∧ m) + 2 ρ2 −

c2

b2
(p + m + 1)

)}
t(ν)

+ 4
{
4 ρ3 + (p + m − (p ∧ m) − 2) ρ2 −

c2

b2
(p + m + 1) ρ2

}
t(ν)

ν2

⎧⎨⎩4 ν
p∧m∑
i

p∧m∑
j̸=i

l−2
i − l−2

j

li − lj
+ (p + m + 2 (p ∧ m) − 1)

p∧m∑
i

p∧m∑
j̸=i

l−1
i − l−1

j

li − lj

⎫⎬⎭ t2(ν) (A.23)

nd

H2(z, u) =

⎧⎨⎩48 ρ4 t(ν) + 8 ρ4 ν t ′(ν) + 8 (p + m − 2 (p ∧ m) − 3) ρ3 t(ν) + 32 ρ3

+4 (2p + 2m − 3 (p ∧ m) − 3) ρ2 − 4
c2

b2
(p + m + 1) ρ2

+4 ν3 t(ν)
p∧m∑
i

p∧m∑
j̸=i

l−2
i − l−2

j

li − lj
+ 4 ν2

p∧m∑
i

p∧m∑
j̸=i

l−1
i − l−1

j

li − lj

⎫⎬⎭ ν t ′(ν) + 8 {ρ4 t(ν) + ρ3} ν
2t ′′(ν) . (A.24)

Successive upper bounds will be developed for H1(z, u) in (A.23) and H2(z, u) in (A.24). First, it follows from the second
nequalities in (A.14) and (A.15) in Lemma A.3 that the last term on the right-hand side of (A.23) is non-positive. Then,
sing the fact that ρ4 ≤ ρ3 ≤ ρ2 (see Lemma A.2), we have

H1(z, u) ≤ (p + m + 2 (p ∧ m) + 3) (p + m − 2 (p ∧ m) + 1) ρ2 t2(ν)

+ 2 (p + m − 2 (p ∧ m) − 1)
(
p + m − (p ∧ m) + 2 ρ2 − (p + m + 1)

c2

b2

)
t(ν)

+ 4 ρ2

(
p + m − (p ∧ m) + 2 − (p + m + 1)

c2

b2

)
t(ν) ,

ince t(·) ≥ 0. Therefore, it follows from the first inequality in (36) that the third term on the right-hand side of the last
nequality is non-positive. Then, since ρ2 ≤ 1, an upper bound for (A.23) is given by

H1(z, u) ≤ (p + m + 2 (p ∧ m) + 3) (p + m − 2 (p ∧ m) + 1) t2(ν)

+ 2 (p + m − 2 (p ∧ m) − 1)
(
p + m − p ∧ m + 2 − (p + m + 1)

c2

b2

)
t(ν) ,

which is non-positive if Condition (ii) holds.
As for the term H2(z, u) in (A.24), according to the first inequalities in (A.14) and (A.15) in Lemma A.3, the li’s terms

between brackets satisfy

4 ν3 t(ν)
p∧m∑
i

p∧m∑
j̸=i

l−2
i − l−2

j

li − lj
+ 4 ν2

p∧m∑
i

p∧m∑
j̸=i

l−1
i − l−1

j

li − lj
≥ −8 {2 (p ∧ m) ρ3 t(ν) + (p ∧ m) ρ2},

hich implies that

H2(z, u) ≤

{
48 ρ4 t(ν) + 8 ρ4 ν t ′(ν) + 8 (p + m − 4 (p ∧ m) − 3) ρ3 t(ν) + 32 ρ3

+4
(
2 p + 2m − 5(p ∧ m) − 3 − (p + m + 1)

c2

b2

)
ρ2

}
ν t ′(ν) + 8 {ρ4 t(ν) + ρ3} ν

2 t ′′(ν) ,

ince t ′(·) ≤ 0. Next, according to the second inequality in (36) and thanks to Lemma A.2, it is clear that

32 ρ3+4
(
2 p + 2m − 5 (p ∧ m) − 3 − (p + m + 1)

c2
2

)
ρ2 ≥ 4

(
2 p + 2m − 4 (p ∧ m) + 5 − (p + m + 1)

c2
2

)
ρ4.
b b

14
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Therefore, as t ′(·) is non-positive, we have

H2(z, u) ≤

{
48 ρ4 t(ν) + 8 ρ4 ν t ′(ν) + 8 (p + m − 4 (p ∧ m) − 3) ρ3 t(ν)

+4
(
2 p + 2m − 5(p ∧ m) − 3 − (p + m + 1)

c2

b2

)
ρ4

}
ν t ′(ν) + 8 {ρ4 t(ν) + ρ3} ν

2 t ′′(ν) .

ow, using the fact that ρ3 ≥ ρ4 and factorizing 4 ρ4 give that

H2(z, u) ≤ 4 ρ4

{
2 (p + m − 4 (p ∧ m) + 3) t(ν) + 2 ν t ′(ν) +

(
2 p + 2m − 5 (p ∧ m) + 5 − (p + m + 1)

c2

b2

)}
× ν t ′(ν)

+ 8 ρ4

{
t(ν) +

ρ3

ρ4

}
ν2 t ′′(ν) . (A.25)

ow, it follows from the Cauchy–Schwarz inequality that

tr2(S+3) ≤ tr(S+4) tr(S+2) ≤ tr(S+4) tr2(S+),

where for the second inequality we apply (A.12) in Lemma A.2 for k = 2. Therefore, we have

ρ3

ρ4
=

tr(S+) tr2(S+3)
tr(S+4) tr(S+3)

≤
1
ρ3

≤ (p ∧ m)2 (A.26)

according again to (A.12) in Lemma A.2. Therefore, thanks to (A.26) and using the fact that t ′′(·) ≥ 0, the upper bound for
2(z, u) in (A.25) is non-positive if Condition (iii) in Proposition 4.1 holds. Since we have H1(z, u) ≤ 0, Condition (A.22)

is satisfied, and hence, Condition (32) is satisfied as well, which is the sufficient domination condition of Σ̂ao,Ψ over Σ̂ao
according to Corollary 3.1. □

A.3. Risk calculations and Stein–Haff type lemma

Here, we focus on risk calculations, optimal constant a0 in (19) and proof of Theorem 2.1, and give the proof of
Lemma 2.1 and Corollary 2.1.

Proof of Proposition 2.1. Let ∥A∥F =
√
tr(A⊤ A) be the Frobenius norm associated to the inner product ⟨A, B⟩ = tr(A⊤ B)

where A and B are p × p matrices. Then the Cauchy–Schwarz inequality expresses that

tr2
(
A⊤ B

)
≤ ∥A∥

2
F ∥B∥2

F . (A.27)

First assume that

Eθ,Σ
[
∥Σ−1 S∥2

F

]
< ∞ . (A.28)

We will show that, for any a > 0, the risk of Σ̂a = a S is finite. Indeed the loss of Σ̂a can be written as

L(Σ, a S) = tr
(
a SΣ−1

− Ip
)2

= a2 tr(Σ−1 S)2 − 2 a tr(Σ−1 S) + p. (A.29)

Then, noticing that tr2(Σ−1 S) = tr2(Σ−1/2 SΣ−1/2), applying (A.27) with A = Ip and B = Σ−1/2 SΣ−1/2 gives

tr2(Σ−1 S) ≤ p ∥Σ−1/2 SΣ−1/2
∥
2
F = p tr

(
Σ−1 S

)2
. (A.30)

Now, with A⊤
= B = Σ−1 S, applying (A.27) gives

tr(Σ−1 S)2 ≤ tr
(
(Σ−1 S)⊤Σ−1 S

)
= ∥Σ−1 S∥2

F . (A.31)

Taking expectation in (A.29), it follows from (A.31) that, according to (A.28), we have Eθ,Σ [tr(Σ−1S)2] < ∞, and hence
according to (A.30), Eθ,Σ [tr2(Σ−1S)] < ∞, which implies that Eθ,Σ [tr(Σ−1S)] < ∞. This is the announced result.

Secondly, we deal with the finiteness of the risk of Σ̂a,G = a S + a SS+. Assume that

Eθ,Σ
[
∥Σ−1 SS+ G∥

2
F

]
< ∞ . (A.32)

We will show that Conditions (A.28) and (A.32) insure that the risk of Σ̂a,G is finite. Note that the loss of Σ̂a,G is

L(Σ, Σ̂a,G ) = L(Σ, a S) + a2 tr(Σ−1 SS+ G)2 + 2 a tr
[
Σ−1 SS+ G(a SΣ−1

− Ip)
]
. (A.33)

As in (A.31), through the Cauchy–Schwarz inequality, we have

tr(Σ−1 SS+ G)2 ≤ ∥Σ−1 SS+ G∥
2,
F

15
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and hence,

Eθ,Σ
[
tr(Σ−1 SS+ G)2

]
≤ Eθ,Σ

[
∥Σ−1 SS+ G∥

2
F

]
< ∞ (A.34)

thanks to (A.32). Also by the Cauchy–Schwarz inequality associated to the inner product ⟨A, B⟩ = Eθ,Σ
[
tr
(
A⊤ B

)]
it follows

that ⏐⏐Eθ,Σ { tr [Σ−1 SS+ G
(
a SΣ−1

− Ip
) ]} ⏐⏐ ≤

(
Eθ,Σ

[
∥Σ−1 SS+ G∥

2
F

]
Eθ,Σ

[
∥a SΣ−1

− Ip∥2
F

])1/2
. (A.35)

By assumption (A.34), the first term on the right-hand side of (A.35) is finite. Also it is clear that the second term is finite,
expanding the squared Frobenius norm and using similar arguments than those used for the finiteness of the risk of Σ̂a.
Finally, it follows that, taking expectation in (A.33), (A.28) and (A.32) are sufficient conditions for the risk Σ̂a,G to be finite.

Lastly, under Conditions (A.28) and (A.32), the risk difference ∆(G) in (24) between Σ̂a,G and Σ̂a is finite and can be
expressed as

∆(G) = Eθ,Σ
[
tr
(
a (S + SS+ G)Σ−1

− Ip
)2]

− Eθ,Σ
[
tr
(
a SΣ−1

− Ip
)2]

= a2 Eθ,Σ
[
tr
(
SS+ GΣ−1 SS+ GΣ−1

+ 2 SΣ−1 SS+ GΣ−1 )]
− 2 a Eθ,Σ

[
tr
(
SS+ GΣ−1)]

= a2Eθ,Σ
[
tr
(
Σ−1 SS+ (2 S + G)Σ−1 SS+ G

)]
− 2 a Eθ,Σ

[
tr
(
Σ−1 SS+ G

) ]
. □

In order to prove Lemma 2.1, we give, in the following lemma, the link between the differential expressions
tr
(
U⊤

∇U {G⊤S+
}
)
and tr

(
SS+ Ds {SS+ G}

⊤
)
, where (∇U )ij = ∂/∂Uij for i ∈ {1, . . . ,m} and j ∈ {1, . . . , p} .

Lemma A.4. For any p × p matrix function G(z, s) weakly differentiable with respect to s, for any z, we have

tr
(
U⊤

∇U {G⊤ S+
}
)

= tr
[
2 SS+ Ds {SS+ G}

⊤
− ((p ∧ m) + 1) S+ G

]
. (A.36)

Proof. Since S+
= SS+S+we have

tr
(
U⊤

∇U {G⊤ S+
}
)

=

p∑
i,j,l

m∑
k

U⊤

ik
∂

∂Ukj
{(G⊤ SS+)jl S+

li } = R1 + R2

here

R1 =

p∑
i,j,l

m∑
k

S+

li U⊤

ik
∂(G⊤S S+)jl

∂Ukj
=

p∑
j,l

m∑
k

(S+U⊤)lk
∂(G⊤SS+)jl
∂Ukj

(A.37)

nd

R2 =

p∑
i,j,l

m∑
k

U⊤

ik (G⊤ SS+)jl
∂S+

li

∂Ukj
=

p∑
j

m∑
k

(
G⊤ SS+

∂S+

∂Ukj
U⊤

)
jk
. (A.38)

ealing with R1, we have, from the chain-rule,

∂(G⊤ SS+)jl
∂Ukj

=

p∑
r≥q

∂Srq
∂Ukj

∂(G⊤ SS+)jl
∂Srq

.

Note also that

∂Sqr
∂Ukj

=
∂

∂Ukj

m∑
o=1

U⊤

qo Uor =

p∑
o=1

(
∂Uoq

∂Ukj
Uor + Uoq

∂Uor

∂Ukj

)
= Ukr δqj + Ukq δrj . (A.39)

Then

∂(G⊤ SS+)jl
∂Ukj

=

⎛⎝ p∑
r≤j

Ukr
∂

∂Srj
+

p∑
q≥j

Ukq
∂

∂Sqj

⎞⎠ (G⊤ SS+)jl =

⎛⎝ p∑
r≤j

Ukr
∂

∂Srj
+

p∑
r≥j

Ukr
∂

∂Srj

⎞⎠ (G⊤ SS+)jl

=

( p∑
r

Ukr
∂

∂Srj
+ Ukj

∂

∂Sjj

)
(G⊤ SS+)jl = 2

p∑
r

Ukr
1
2
(1 + δrj)

∂

∂Srj
(G⊤ SS+)jl

= 2
p∑
r

Ukr dsrj(G
⊤ SS+)jl ,
16
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by definition of the generic term dsrj of Ds{·}. Hence (A.37) becomes

R1 = 2
p∑
l,j

m∑
k

(S+ U⊤)lk
p∑
r

Ukr dsrj(G
⊤ SS+)jl = 2 tr

(
SS+ Ds{SS+ G}

⊤
)
. (A.40)

As for R2 in (A.38), using Proposition A.2 with A = G⊤ SS+ and B = U⊤, we have

R2 =

p∑
j

m∑
k

(
(G⊤ SS+)(I − SS+)

)
jj (U SS+ U⊤)kk +

p∑
j

m∑
k

(
(I − SS+)U⊤

)
jk

(
U (G⊤ S+ S+)⊤

)
kj

−

p∑
j

m∑
k

(
(G⊤ S+)jj(U S+ U⊤)kk + (S+ U⊤)jk(U S+ G)kj

)
.

ince SS+(Ip − SS+) = S (Ip − SS+) = 0 , (Ip − SS+)U⊤
= 0 , tr(SS+) = p ∧ m, and S = U⊤U . Thus R2 simplifies in

R2 = −( p ∧ m + 1) tr
(
S+G

)
. (A.41)

ombining (A.40) and (A.41) gives the desired result. □

roof of Lemma 2.1. A Stein–Haff type identity, in the elliptical framework and for both singular and non-singular cases,
as given by Fourdrinier Mezoued and Wells [12] as follows:

Eθ,Σ
[
tr
(
Σ−1 S H

)]
= K ∗ E∗

θ,Σ

[
m tr(H) + tr

(
U⊤

∇UH⊤
)]
.

hese authors remark that an equivalent expression of this identity is

Eθ,Σ
[
tr
(
Σ−1 S H

)]
= K ∗ E∗

θ,Σ

[
m tr(SS+ H) + tr

(
U⊤

∇UH⊤ SS+
)]
,

ince S = SS+S. For H = S+G this identity becomes

Eθ,Σ
[
tr
(
Σ−1 SS+ G

)]
= K ∗ E∗

θ,Σ

[
m tr(S+ G) + tr

(
U⊤

∇UG⊤ S+
)]
. (A.42)

herefore, we deduce the Stein–Haff type identity in (26) through the Haff operator Ds by replacing (A.36) in (A.42).

roof of Corollary 2.1. We first apply Lemma 2.1 taking VΣ−1SS+G instead of G. Thus

Eθ,Σ
[
tr
(
Σ−1SS+VΣ−1SS+G

)]
= K ∗E∗

θ,Σ

[
tr
[
2SS+Ds{G⊤SS+Σ−1V⊤SS+

} + (m − (p ∧ m) − 1)Σ−1SS+GS+V
]]
.

(A.43)

Secondly, according to (A.10), the first integrand term on the right-hand side of (A.43) can be rewritten as

tr
[
SS+ Ds{G⊤SS+Σ−1V⊤SS+

}
]

= tr
[
Σ−1V⊤SS+Ds{G⊤SS+

}
]
tr
[
SS+

(
Σ−1SS+GDs

)⊤
{V⊤SS+

}

]
. (A.44)

Now, applying (A.11) to the second term on the right-hand side of (A.44) gives

tr
[
SS+

(
Σ−1SS+ GDs

)⊤
{V⊤ SS+

}

]
= tr

[
Σ−1SS+ G (SS+ Ds)⊤{SS+ V }

]
.

Furthermore, using the fact that SS+
= SS+ SS+, it is clear that from (A.10) in Proposition A.1 that

(SS+Ds)⊤{SS+V } = Ds{SS+V } − Ds{SS+
}SS+V .

Hence, according to (A.64) and using the fact that (Ip − SS+)S = 0p×p we have

(SS+Ds)⊤{SS+V } = Ds{SS+V } −
1
2
(p − p ∧ m)S+V .

herefore

tr
[
SS+

(
Σ−1SS+GDs

)⊤
{V⊤S+S}

]
= tr

[
Σ−1SS+G

(
Ds{SS+V } −

1
2
(p − p ∧ m)S+V

)]
. (A.45)

Now, combining (A.43), (A.44) and (A.45) and using the symmetry of SS+V gives

Eθ,Σ
[
tr
(
Σ−1SS+VΣ−1SS+G

)]
= K ∗E∗

θ,Σ

[
tr
(
Σ−1SS+T ∗

)]
, (A.46)

where

T ∗
= 2

[
SS+V Ds{SS+G}

⊤
+ SS+GDs{SS+V }

]
− (p − m + 1)GS+V .

inally, applying Lemma 2.1 to (A.46) with T ∗ instead of G gives

E∗

θ,Σ

[
tr
(
Σ−1SS+T ∗

) ]
= K ∗∗E∗∗

θ,Σ

[
tr
(
2S+S Ds{SS+T ∗

}
⊤

− (m − (p ∧ m) − 1)S+T ∗
) ]
. □
17
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Determination of the optimal constant a0. Let Σ̂a = a S, where a is a positive constant. Then, according to (17), the risk
at Σ of Σ̂a is

R(Σ, Σ̂a) = Eθ,Σ
[
tr
(
aSΣ−1

− Ip
)2]

= a2 Eθ,Σ
[
tr
(
Σ−1SS+S

)2]
− 2 a Eθ,Σ

[
tr
(
Σ−1SS+S

)]
+ p, (A.47)

since S = SS+S. Setting G = V = S in Corollary 2.1 to deal with the first term on the right-hand side of (A.47), and in
Lemma 2.1 to deal with the second term, we have

R(Σ, Σ̂a) = a2K ∗K ∗∗ E∗∗

θ,Σ

[
tr
[
2 S+S Ds{SS+T ∗

}
⊤

+ (m − (p ∧ m) − 1) S+T ∗
] ]

− 2 a K ∗E∗

θ,Σ

[
tr
[
2 S+S Ds{S} + (m − (p ∧ m) − 1) S+S

] ]
+ p , (A.48)

here

T ∗
= 4 S Ds{S} − (p − m + 1) S.

urthermore, thanks to (A.63) and (A.64) and using the fact that S(Ip−SS+) = 0p×p, the integrand terms on the right-hand
side of (A.48) are evaluated as

tr
[
2 S+S Ds{SS+T ∗

}
⊤

+ (m − (p ∧ m) − 1) S+T ∗
]

= (p + m + 1) (p + m − p ∧ m) tr(SS+) (A.49)

nd

tr
(
2 S+S Ds{S} + (m − (p ∧ m) − 1) S+S

)
= (p + m − p ∧ m) tr(S+S) (A.50)

ubstituting (A.49) and (A.50) in (A.48) gives

R(Σ, Σ̂a) = a2K ∗K ∗∗ mp (p + m + 1) − 2 a K ∗mp + p ,

ince tr(S+S) = p ∧ m. Clearly, ao = 1/K ∗∗(p + m + 1) gives rise to the optimal constant a under the risk (17). □

roof of Theorem 2.1. Expressing the risk difference in (28) only through the Eθ,Σ -expectation, thanks to (A.4) and (A.5),
e have

∆(G) = a2o K
∗Eθ,Σ

[
ϕ∗

θ,Σ (Z,U)ϕ∗∗

θ,Σ (Z,U)
(
tr
[
2 S+S Ds{SS+T ∗

}
⊤

− (m − (p ∧ m) − 1) S+T ∗
]

−
2

ao K ∗ ϕ∗∗

θ,Σ (Z,U)
tr
[
2 S+S Ds{SS+G} − (m − (p ∧ m) − 1) S+G

] )]
, (A.51)

here ao is given in (19). Using Inequality (A.8) in Lemma A.1 and also noting that K ∗∗
≥ c2, it can be shown that

K ∗∗/K ∗ϕ∗∗

θ,Σ (Z,U) ≥ c2/b2. Therefore, under Condition (21),

∆(G) ≤ a2 K ∗Eθ,Σ
[
ϕ∗

θ,Σ (Z,U)ϕ∗∗

θ,Σ (Z,U)
(
tr
[
2 S+S Ds{SS+T ∗

}
⊤

− (m − (p ∧ m) − 1) S+T ∗
]

− 2 (p + m + 1)
c2

b2
tr
[
2 S+S Ds{SS+G} − (m − (p ∧ m) − 1) S+G

] ) ]
.

hen, the estimator Σ̂ao,G dominates Σ̂ao if Inequality (22) holds, since ϕ∗

θ,Σ (Z,U) and ϕ∗∗

θ,Σ (Z,U) are non-negative
unctions. □

.4. Differential expressions

The following proposition is used in the proof of Lemma 2.1 given in Appendix A.3.

roposition A.2. Recall that S = U⊤U is a p × p symmetric matrix. For a non null integer N, let A be an N × p matrix and
a p × N matrix. Then(

A
∂S+

∂Ukj
B
)

li
=
(
A (Ip − SS+)

)
lj

(
US+S+ B

)
ki +

(
(Ip − SS+) B

)
ji

(
U S+S+ A⊤

)
kl −

(
A S+

)
lj

(
U S+ B

)
ki

−
(
S+ B

)
ji

(
U S+ A⊤

)
kl .

Proof. Applying a well known result about the derivatives of the Moore–Penrose inverses S+ (see Harville [18]), we have
for any 1 ≤ k ≤ m and any 1 ≤ j ≤ p,

∂S+

∂Ukj
= − S+

∂S
∂Ukj

S+
+ (Ip − SS+)

∂S
∂Ukj

S+S+
+ S+S+

∂S
∂Ukj

(Ip − SS+),

nd then(
A
∂S+

B
)

= −

(
A S+

∂S
S+ B

)
+

(
A (Ip − SS+)

∂S
S+ S+ B

)
+

(
A S+S+

∂S
(Ip − SS+) B

)
. (A.52)
∂Ukj li ∂Ukj li ∂Ukj li ∂Ukj li

18
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Thanks to (A.39), the first term on the right-hand side of (A.52) becomes(
A S+

∂S
∂Ukj

S+ B
)

li
=

p∑
q,r

(A S+)lq

(
∂S
∂Ukj

)
qr
(S+ B)ri

=

m∑
r

(A S+)lj (S+ B)ri Ukr +

m∑
q=1

(A S+)lq (S+B)ji Ukq = (A S+)lj (U S+ B)ki + (S+ B)ji (U S+ A⊤)kl.

(A.53)

imilarly, the two other terms on the right-hand side of (A.52) become respectively(
A (Ip − SS+)

∂S
∂Ukj

S+S+ B
)

li
=
(
A (Ip − SS+)

)
lj (U S+S+ B)ki + (S+S+ B)ji

(
U
(
Ip − SS+

)
A⊤
)
kl (A.54)

nd (
A S+S+

∂S
∂Ukj

(Ip − SS+) B
)

li
= (A S+S+)lj

(
U (Ip − SS+) B

)
ki +

(
(Ip − SS+) B

)
ji (U S+S+ A⊤)kl . (A.55)

ence, replacing (A.53), (A.54) and (A.55) in (A.52) and using the fact that U(Ip − SS+) = 0(p∧m)×p, give the desired
esult. □

The following lemma evaluates the derivatives of eigenvalues and eigenvectors of S and is used in Lemma A.6.

emma A.5. Let 1 ≤ i, j, a, r ≤ p and 1 ≤ k ≤ p ∧ m. Then

dsijlk = (H1)ik (H1)jk (A.56)

nd

(dsijH1)ak =
1
2

p∧m∑
r ̸=k

(H1)ar
lk − lr

[
(H1)ir (H1)jk + (H1)jr (H1)ik

]
+

1
2 lk

[
(Ip − H1H⊤

1 )ai(H1)jk + (Ip − H1H⊤

1 )aj(H1)ik
]
. (A.57)

roof. Recall that S = H1LH⊤

1 where H1 ∈ Lp×(p∧m) and L ∈ D(p∧m)×(p∧m). Take H2 ∈ Lp×(p−(p∧m)) such that H⊤

2 H1 =

0(p−p∧m)×(p∧m) to form H = [H1,H2] ∈ Op. Note that, in the invertible case, H = H1 ∈ Op and there is no H2 to complete
H1.

For any differential operator of S, we have

dS = (dH1) L H⊤

1 + H1 (dL)H⊤

1 + H1 L (dH⊤

1 ),

which yields

H⊤ (dS)H1 =

[
H⊤

1 (dS)H1

H⊤

2 (dS)H1

]
=

[
H⊤

1 (dH1) L + H⊤

1 H1 (dL) + H⊤

1 H1 L (dH⊤

1 )H1

H⊤

2 (dH1) L + H⊤

2 H1(dL) + H⊤

2 H1 L (dH⊤

1 )H1

]
.

he differential expression of H⊤

1 H1 = Ip∧m gives that (dH⊤

1 )H1 = −H⊤

1 (dH1). Then[
H⊤

1 (dS)H1

H⊤

2 (dS)H1

]
=

[
H⊤

1 (dH1) L − L H⊤

1 (dH1) + (dL)
H⊤

2 (dH1) L

]
ince H⊤

2 H1 = 0(p−p∧m)×(p∧m) . Hence, for 1 ≤ k ≤ p ∧ m

(dL)k =
{
H⊤

1 (dS)H1
}
kk − {H⊤

1 (dH1) L}kk + {L H⊤

1 (dH1)}kk =
{
H⊤

1 (dS)H1
}
kk , (A.58)

ince {L H⊤

1 (dH1)}kk − {H⊤

1 (dH1) L}kk = 0.
Now, for r ̸= k, we have

{H⊤

1 (dS)H1}rk = {H⊤

1 (dH1)}rk lk − lr {H⊤

1 (dH1)}rk for r, k ∈ {1, . . . , p ∧ m}

{H⊤

2 (dS)H1}rk = {H⊤

2 (dH1)}rk lk for r = p ∧ m + 1, . . . , p and k ∈ {1, . . . , p ∧ m}

herefore,

(H⊤

1 (dH1))rk =
1

lk − lr
{H⊤

1 (dS)H1}rk for r, k ∈ {1, . . . , p ∧ m}

(H⊤

2 (dH1))rk =
1
lk

{H⊤

2 (dS)H1}rk for r ∈ {p ∧ m + 1, . . . , p} and k ∈ {1, . . . , p ∧ m}. = (A.59)
19
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Now, if ‘‘d’’ is the Haff operator Ds in (20), we have (dsijS)cd =
(
δicδjd + δidδjc

)
/2. Then

{H⊤

1 (dsijS)H1}rk =
1
2

[
(H1)ir (H1)jk + (H1)jr (H1)ik

]
and {H⊤

2 (dsijS)H1}rk =
1
2

[
(H2)ir (H1)jk + (H2)jr (H1)ik

]
(A.60)

ence, using (A.60), Equality (A.58) becomes dsijlk = (H1)ik(H1)jk , which is (A.56). Dealing with (A.57), note that, since
H⊤

= Ip,

(dsijH1)ak = {HH⊤(dsij H1)}ak =

p∧m∑
r ̸=k

(H1)ar{H⊤

1 (dsijH1)}rk +

p∑
r=(p∧m)+1

(H2)ar{H⊤

2 (dsijH1)}rk . (A.61)

ombining (A.59), (A.60) we have, for r ̸= k,

(H⊤

1 (dsijH1))rk =
(H1)ir (H1)jk + (H1)jr (H1)ik

2 (lk − lr )
and (H⊤

2 (dsijH1))rk =
(H2)ir (H1)jk + (H2)jr (H1)ik

2 lk
.

Therefore (A.61) becomes

(dsijH1)ak =
1
2

p∧m∑
r ̸=k

(H1)ar
lk − lr

[
(H1)ir (H1)jk + (H1)jr (H1)ik

]
+

1
2lk

[
(H2 H⊤

2 )ai(H1)jk + (H2H⊤

2 )aj(H1)ik
]
,

hich gives the desired result in (A.57) since H2 H⊤

2 = Ip − H1 HT
1 . □

The following lemma is a generalization of the results of Haff [17] to both invertible and non-invertible cases.

emma A.6. Under the notation of the proof of Lemma A.5, let G = H1ΨH⊤

1 where Ψ ∈ Dp∧m. Then SS+ G = G and

Ds{SS+ G} = Ds{H1ΨH⊤

1 } = H1Ψ
(1)H⊤

1 +
1
2
tr(L−1Ψ )(Ip − H1H⊤

1 ) , (A.62)

here Ψ (1)
∈ Dp∧m with

ψ
(1)
i =

1
2
(p − (p ∧ m))

ψi

li
+
∂ψi

∂ li
+

1
2

p∧m∑
j̸=i

ψi − ψj

li − lj
.

Furthermore

Ds{S} = Ds{H1LH⊤

1 } =
1
2
(p + 1)H1H⊤

1 +
1
2
(p ∧ m)(Ip − H1H⊤

1 ) , (A.63)

Ds{SS+
} = Ds{H1H⊤

1 } =
1
2
(p − p ∧ m)H1 L−1 H⊤

1 +
1
2
tr(L−1)(Ip − H1H⊤

1 ) (A.64)

nd

(SS+ Ds)⊤{SS+G} = (H1H⊤

1 Ds)⊤{H1ΨH⊤

1 } = Ds{H1ΨH⊤

1 } −
1
2
(p − (p ∧ m))(H1L−1ΨH⊤

1 ) . (A.65)

roof. The (i, a) elements of the matrix Ds{H1ΨH⊤

1 } are expressed as

(Ds{H1ΨH⊤

1 })ia =

p∑
j

p∧m∑
b

dsij{(H1)jbψb(H1)ab} = Aia + Bia + Cia,

here

Aia =

p∑
j

p∧m∑
b

ψb(H1)ab(dsijH1)jb , Bia =

p∑
j

p∧m∑
b

ψb(H1)jb(dsijH1)ab and Cia =

p∑
j

p∧m∑
b

(H1)jb(H1)ab(dsijψ)b . (A.66)

First, we deal with Aia and Bia. Thanks to (A.57), we obtain

Aia =
1
2

p∑
j

p∧m∑
b

p∧m∑
r ̸=b

ψb (H1)ab(H1)jr
lb − lr

[
(H1)ir (H1)jb + (H1)jr (H1)ib

]
+

1
2

p∑
j

p∧m∑
b

ψb (H1)ab
lb

[
(Ip − H1H⊤

1 )ji(H1)jb + (Ip − H1H⊤

1 )jj(H1)ib
]

20
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and

Bia =
1
2

p∑
j

p∧m∑
b

p∧m∑
r ̸=b

ψb (H1)jb(H1)ar
lb − lr

[
(H1)ir (H1)jb + (H1)jr (H1)ib

]
+

1
2

p∑
j

p∧m∑
b

ψb (H1)jb
lb

[
(Ip − H1H⊤

1 )ai(H1)jb + (Ip − H1H⊤

1 )aj(H1)ik
]
.

umming on j, we have

Aia =
1
2

p∧m∑
b

p∧m∑
r ̸=b

ψb(H1)ab
lb − lr

[
(H1)ir (H⊤

1 H1)rb + (H⊤

1 H1)rr (H1)ib
]

+
1
2

p∧m∑
b

ψb (H1)ab
lb

[
(H⊤

1 (Ip − H1H⊤

1 ))bi + tr(Ip − H1H⊤

1 )(H1)ib
]

and

Bia =
1
2

p∧m∑
b

p∧m∑
r ̸=b

ψb(H1)ar
lb − lr

[
(H1)ir (H⊤

1 H1)bb + (H⊤

1 H1)br (H1)ib
]

+
1
2

p∧m∑
b

ψb

lb

[
(Ip − H1H⊤

1 )ai(H⊤

1 H1)bb + ((Ip − H1H⊤

1 )H1)ab(H1)ik
]
.

ow, using the fact that (H1 H⊤

1 )rb = δrb, we have

Aia =
1
2

p∧m∑
b

p∧m∑
r ̸=b

ψb(H1)ab
lb − lr

(H1)ib +
1
2

p∧m∑
b

ψb (H1)ab
lb

[
(H⊤

1 (Ip − H1H⊤

1 ))bi + tr(Ip − H1H⊤

1 )(H1)ib
]

nd

Bia =
1
2

p∧m∑
b

p∧m∑
r ̸=b

ψb(H1)ar
lb − lr

(H1)ir +
1
2

p∧m∑
b

ψb

lb

[
(Ip − H1H⊤

1 )ai + ((Ip − H1H⊤

1 )H1)ab(H1)ik
]
.

ince H⊤

1 H1 = Ip∧m, we have H⊤

1 (Ip − H1H⊤

1 ) =
(
(Ip − H1H⊤

1 )H1
)⊤

= 0(p∧m)×p and tr(Ip − H1H⊤

1 ) = p − (p ∧ m). Hence

Aia =
1
2

p∧m∑
b

(H1)ib
p∧m∑
r ̸=b

ψb

lb − lr
(H⊤

1 )ba +
1
2
(p − (p ∧ m))

p∧m∑
b

(H1)ib
ψb

lb
(H⊤

1 )ba (A.67)

nd

Bia =
1
2

p∧m∑
b

p∧m∑
r ̸=b

ψb(H1)ar (H1)ir
lb − lr

+
1
2
tr(L−1Ψ )(Ip − H1H⊤

1 )ia .

The expression of Bia can be specified noticing that
p∧m∑
b

p∧m∑
r ̸=b

ψb(H1)ar (H1)ir
lb − lr

= −

p∧m∑
b

p∧m∑
r ̸=b

ψr (H1)ab(H1)ib
lb − lr

,

hat is,

Bia = −
1
2

p∧m∑
b

(H1)ib
p∧m∑
b̸=r

ψr

lb − lr
(H⊤

1 )ba +
1
2
tr(L−1Ψ )(Ip − H1H⊤

1 )ia . (A.68)

Dealing with Cia in (A.66), we have from the chain-rule

Cia =

p∑ p∧m∑
(H1)jb(H1)ab

p∧m∑
q

∂ψb

∂ lq
dsijlq .
j b
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Then, using (A.56), we have

Cia =

p∧m∑
b

(H1)ab
p∧m∑
q

∂ψb

∂ lq
(H1)iq(H1H⊤

1 )qb , and hence, Cia =

p∧m∑
b

(H1)ib
∂ψb

∂ lb
(H⊤

1 )ba , (A.69)

ince H⊤

1 H1 = Ip∧m. Finally, gathering expressions (A.67), (A.68) and (A.69) gives the result in (A.62).
Now, in order to prove (A.63) (respectively (A.64)) we apply (A.62) for Ψ = L (respectively Ψ = Ip∧m), which gives the

esired result since Ψ (1)
= Ip∧m (p + 1)/2 (respectively Ψ (1)

= (p − p ∧ m) L−1). As for (A.65), we have from (A.10)

Ds{H1ΨH1} = Ds{H1H⊤

1 H1ΨH1} = Ds{H1H⊤

1 }H1ΨH1 + (H1H⊤

1 Ds)⊤{H1ΨH⊤

1 }.

hen, according to (A.64), we have

(H1H⊤

1 Ds)⊤{H1ΨH⊤

1 } = Ds{H1ΨH1} −
1
2
(p − p ∧ m)H1L−1H⊤

1 . □
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