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Received November 11, 2022; revised September 21, 2023; accepted October, 2023

Abstract—In this paper, we estimate the precision matrix Σ−1 of a Gaussian multivariate linear
regression model through its canonical form (ZT , UT )T where Z and U are respectively an m× p

and an n× p matrices. This problem is addressed under the data-based loss function tr [(Σ̂−1 −
Σ−1)S]2, where Σ̂−1 estimates Σ−1, for any ordering of m,n and p, in a unified approach. We derive
estimators which, besides the information contained in the sample covariance matrix S = UTU , use
the information contained in the sample mean Z. We provide conditions for which these estimators
improve over the usual estimators aS+ where a is a positive constant and S+ is the Moore-Penrose
inverse of S. Thanks to the role of Z, such estimators are also improved by their truncated version.
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1. INTRODUCTION

Consider the canonical form (ZT , UT )T of the multivariate linear regression model, where Z and U
are respectively an m× p and an n× p mutually independent random matrices distributed as

Z ∼ Nm×p(θ, Im ⊗ Σ) and U ∼ Nn×p(0, In ⊗ Σ)

so that (ZT , UT )T has density

(2π)−(m+n)p/2|Σ|−(m+n)/2 exp[−tr {(z − θ)Σ−1(z − θ)T + uΣ−1uT }/2]. (1)

Here θ is the unknown mean matrix and Σ is the unknown positive definite covariance matrix.
It is worth pointing out that, in the case where p ≤ n, the p× p sample covariance matrix S = UTU

is invertible and has a Wishart distribution. Srivastava [13] gave a generalization of the Wishart
distribution, called the singular Wishart, to the case where p > n, that is, when S is non-invertible.
In the following, for both singular and non-singular cases, we use the notation S ∼ Wp(n,Σ) and S+

holds for the Moore–Penrose inverse of S, which coincides with the regular inverse S−1 in the case
where p ≤ n.

The model in (1) has been used by various authors in the literature, e.g., Tsukuma and Kubokawa
[17] for the estimation of the scale matrix Σ, and Tsukuma and Kubokawa [16] for the estimation of the
mean matrix θ. We refer to Tsukuma and Kubokawa [18] for more details about the development of this
canonical form. Note that an extension to the case where the density is elliptically symmetric has been
considered by Haddouche et al. [7] and by Canu and Fourdrinier [2].

In this paper, we deal with the problem of estimating the precision matrix Σ−1, based on the sufficient
statistic (Z,S), where the performance of any estimator Σ̂−1 is assessed under the loss function

L
(
Σ−1, Σ̂−1

)
= tr

[(
Σ̂−1 − Σ−1

)
S
]2

(2)
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and its associated risk

R
(
Σ−1, Σ̂−1

)
= Eθ,Σ

[
tr
[ (

Σ̂−1 − Σ−1
)
S
]2]

, (3)

where Eθ,Σ denotes the expectation with respect to the density (1). The loss in (2) differs from the usual
quadratic loss tr [(Σ̂−1 −Σ−1)]2 in so far as, beside the dependence of Σ̂−1 with respect toS, the matrix S
intervenes in the loss structure. Following Fourdrinier and Strawderman [3] we call such a loss a data-
based loss. For various estimation problems, analogous data-based losses have been used by many
authors such as Fourdrinier et al. [5], Kubokawa and Srivastava [10], and Boukehil et al. [1] since these
losses turned out to allow evaluation of more orthogonally invariant estimators (see Takemura [15]) than
the usual quadratic loss.

For the extended class of estimators that we consider, we will see that our loss in (2) is more suitable
(see Remarks 1 and 2 below for more details).

It is shown in Section A.3 of Appendix A that the optimal estimator, which minimizes the risk (3),
among the class of the usual estimators of the form aS+ where a is a positive constant, is

Σ̂−1
o = aoS

+ with ao = n ∨ p, (4)

where n ∨ p is the maximum between n and p. Note that, the estimator Σ̂−1
o in (4) depends only on the

statistic S.

There exist estimators better than Σ̂−1
o depending only on S, such as the orthogonally invariant

estimators considered by Kubokawa and Srivastava [10] and Fourdrinier et al. [4] (see Remark A.4
in the Appendix A). We enlarge the class of such improved estimators with estimators that also involve
the information contained in the statistic Z. This dependence on Z allows also the construction of
new estimators, called truncated estimators, which improve over the “non-truncated” estimators. This
estimation problem is addressed for any ordering of m,n, and p, in a unified approach.

These estimators parallel those considered by Kubokawa and Srivastava [9], Kubokawa and Tsai
[11], and Tsukuma and Kubokawa [17] in the context of estimating the covariance matrix Σ. While the
original idea of using Z is due to Stein [14], to our knowledge only Sinha and Ghosh [12] considered
such estimators for estimating the precision matrix under the Stein loss function

L
(
Σ−1, Σ̂−1

)
= tr (ΣΣ̂−1)− log |ΣΣ̂−1| − p

and in the case where S is invertible.
This paper is structured as follows. In Section 2, dominance results are provided in a unified approach

with respect to any ordering of m,n, and p, under the risk function (3). We first show that Σ̂−1
o is

dominated by a class of estimators involving the statistic Z. Secondly, we give a truncation rule which
leads to derive estimators that improve over the latter. Examples of such estimators illustrate the results.
In Section 3, we complete the investigation of the performance of these estimators through a numerical
study. In Section 4, we give concluding remarks and some perspectives. Finally, an appendix contains
technical results which have been used in the development of the paper.

2. MAIN RESULTS

2.1. Preliminaries

Consider the model in (1). Let

S = HLHT (5)

be the eigenvalue decomposition of the sample covariance matrix S = UTU where the matrix L =
diag(l1 > ... > li > ... > ln∧p > 0) is the (n ∧ p)× (n ∧ p) diagonal matrix of the positive eigenvalues
of S and H the p× (n ∧ p) semi-orthogonal matrix (HTH = In∧p) of the corresponding eigenvectors
(see Srivastava [13] for more details). In order to construct a new class of estimators, we combine
the information on the unknown scatter matrix Σ and the mean matrix θ, contained respectively in the
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14 HADDOUCHE, FOURDRINIER

matrices S and Z. To this end, through Lemma A.3 and its proof, we rely on the thin singular value
decomposition of ZHL−1/2 defined as

ZHL−1/2 = RΛ1/2OT ,

where
Λ = diag(λ1 > · · · > λi > · · · > λk > 0) (6)

is a k × k diagonal matrix with k = n ∧m ∧ p, O is an (n ∧ p)× k semi-orthogonal matrix (OTO = Ik)
and R is also an m× k semi-orthogonal matrix (RTR = Ik). See Subsection 2.5.4 of Golub and van
Loan [6]. In particular, we deal with the simultaneous diagonalization of S in (5) and

W = ZTZ. (7)

2.2. An Extended Class of Estimators

The estimators considered in this section are based on the information contained in both the statistics
S and Z. They are of the form

Σ̂−1
Ψ = ao

(
S+ + (Q−)

T
Ψ(Λ)Q−

)
, (8)

where S+ = HL−1HT is the Moore–Penrose inverse of S, Ψ(Λ) is a k × k diagonal matrix such that
its elements are absolutely continuous functions of the λi’s in (6) and

Q− = OTL−1/2HT ,

which is, according to Lemma A.3, a reflexive generalized inverse of

Q = HL1/2O.

We emphasize that, when k = n ∧ p, the Moore–Penrose inverse S+ of S equals (Q−)TQ− since O is
orthogonal. In that case, the class of estimators in (8) can be re-written as

Σ̂−1
Ψ = ao(Q

−)
T
(In∧p +Ψ(Λ))Q−,

which parallels the class considered by Kubokawa and Tsai [11] for estimating Σ.
The following theorem gives an improvement and a dominance result, with respect to the risk in (3),

of the alternative estimators Σ̂−1
Ψ in (8) over the usual estimator Σ̂−1

o in (4). The improvement result
consists in showing that the risk difference between Σ̂−1

Ψ and Σ̂−1
o satisfies

Δθ,Σ(Ψ) = R
(
Σ̂−1
Ψ ,Σ−1

)
−R

(
Σ̂−1
o ,Σ−1

)
≤ 0 (9)

for any θ and any Σ. As for the dominance result, one has to show that, in addition to the fact that (9) is
satisfied, this inequality is strict for some (θ,Σ).

Theorem 1. Let Ψ(Λ) = diag (ψ1(Λ), . . . , ψi(Λ), . . . , ψk(Λ)) be a k × k diagonal matrix function
of Λ in (6) such that, for any i = 1, . . . , k, the function λi �→ ψi (λ1, . . . , λi, . . . , λk) is absolutely
continuous.

The risk difference between Σ̂−1
Ψ in (8) and Σ̂−1

o in (4) is expressed as

Δθ,Σ(Ψ) = aoEθ,Σ

[
δ(Ψ)

]
,

where δ(Ψ) equals

k∑
i=1

⎧
⎨
⎩(n ∨ p)ψ2

i − 2(2k − n ∧ p− 1)ψi + 4λi
∂ψi

∂λi
+ 4

∑
j>i

λiψi − λjψj

λi − λj

⎫
⎬
⎭ , (10)

so that the random variable aoδ(Ψ) appears as an unbiased estimator of this risk difference. Then
Σ̂−1
Ψ improves over (respectively dominates) Σ̂−1

o as soon as δ(Ψ) is non positive (respectively
negative).
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Proof. Note that Σ̂−1
Ψ can be rewritten as Σ̂−1

Ψ = Σ̂−1
o + ao(Q

−)TΨ(Λ)Q− so that the risk at Σ−1 of
Σ̂−1
Ψ in (8) is

R
(
Σ−1, Σ̂−1

Ψ

)
= Eθ,Σ

[
tr
[(

Σ̂−1
o − Σ−1 + ao(Q

−)
T
Ψ(Λ)Q−

)
S
]2]

= Eθ,Σ

[
tr
[(

Σ̂−1
o − Σ−1

)
S
]2]

+ a2oEθ,Σ

[
tr
(
(Q−)

T
Ψ(Λ)Q−S

)2]

+ 2aoEθ,Σ

[
tr
(
Σ̂−1
o S(Q−)

T
Ψ(Λ)Q−S

)]

− 2aoEθ,Σ

[
tr
(
Σ−1S(Q−)

T
Ψ(Λ)Q−S

)]
,

where

Eθ,Σ

[
tr
[(

Σ̂−1
o − Σ−1

)
S
]2]

= R
(
Σ−1, Σ̂−1

o

)
.

Thus the risk difference between Σ̂−1
Ψ and the optimal estimator Σ̂−1

o equals

Δθ,Σ(Ψ) = R
(
Σ−1, Σ̂−1

Ψ

)
−R

(
Σ−1, Σ̂−1

o

)

= a2oEθ,Σ

[
tr
(
(Q−)

T
Ψ(Λ)Q−S

)2]
+ 2aoEθ,Σ

[
tr
(
Σ̂−1
o S(Q−)

T
Ψ(Λ)Q−S

)]

− 2aoEθ,Σ

[
tr
(
Σ−1S(Q−)

T
Ψ(Λ)Q−S

)]
.

Now we have

tr
({

(Q−)
T
Ψ(Λ)Q−S

}2
)

= tr
({

S(Q−)
T
Ψ(Λ)Q−

}2
)

= tr
({

QΨ(Λ)Q−}2) according to (A.10)

= tr
({

Q−QΨ(Λ)
}2)

= tr
(
{Ψ(Λ)}2

)
according to (A.9),

tr
(
Σ̂−1
o S(Q−)

T
Ψ(Λ)Q−S

)
= aotr

(
S+S(Q−)

T
Ψ(Λ)Q−S

)

= aotr
(
S+QΨ(Λ)Q−S

)
according to (A.10)

= aotr
(
Q−SS+QΨ(Λ)

)

= aotr
(
QTS+QΨ(Λ)

)
according to (A.10)

= aotr (Ψ(Λ)) according to (A.12)

and

tr
(
Σ−1S(Q−)

T
Ψ(Λ)Q−S

)
= tr

(
Σ−1QΨ(Λ)QT

)
according to (A.10).

Hence, Δθ,Σ(Ψ) equals

a2oEθ,Σ

[
tr
(
{Ψ(Λ)}2

)]
+ 2a2oEθ,Σ [tr (Ψ(Λ))]− 2aoEθ,Σ

[
tr
(
Σ−1QΨ(Λ)QT

)]
. (11)

Then applying the Stein–Haff type identity in (A.4), with Φ = Ψ, to the last expectation in (11) and
expressing the various traces give rise to the unbiased estimator of the risk difference δ(Ψ) in (10), since
ao = n ∨ p.

Finally, the improvement and dominance results are immediate. �
Remark 1. The loss function in (2) allows to get rid of the matrix Q in the expression of the risk

of Σ̂−1
Φ through the fact that Q− is the left inverse of Q and thanks to the Stein–Haff type identity
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16 HADDOUCHE, FOURDRINIER

in (A.4). Such a simplification does not occur with the usual quadratic loss tr[(Σ̂−1 − Σ−1)2] and with
the data-based loss tr[(Σ̂−1 − Σ−1)2S] used by Kubokawa and Srivastava [10].

2.2.1. A Haff type estimator. As an exemple, the estimator we consider in the following parallels
the orthogonally invariant estimator used by Haff [8] in the case where S is invertible, and hence, is an
extension involving Z. Let

Σ̂−1
ΨHF = ao

(
S+ + (Q−)

T
ΨHFQ−

)
with ψHF

i = c
λ−1
i

tr(Λ−1)
and c > 0. (12)

Using Theorem 1, we can see that Σ̂−1
ΨHF improves over Σ̂−1

o as soon as

0 < c ≤ 2(2k − n ∧ p− 1)

n ∨ p
(13)

since 2k − n ∧ p− 1 ≥ 0. Indeed the unbiased estimator of the risk difference δ(Ψ) in (10) becomes

δ(ΨHF ) =

k∑
i=1

{
(n ∨ p)

λ−2
i

tr2 (Λ−1)
c2 − 2(2k − n ∧ p− 1)

λ−1
i

tr(Λ−1)
c+ 4

(
λ−2
i

tr2 (Λ−1)
− λ−1

i

tr (Λ−1)

)
c

}

= (n ∨ p)
tr(Λ−2)

tr2 (Λ−1)
c2 − 2(2k − n ∧ p− 1)c+ 4

(
tr(Λ−2)

tr2 (Λ−1)
− 1

)
c.

Using the fact that tr(Λ−2) ≤ tr2
(
Λ−1

)
, an upper bound for δ(ΨHF ) is given by

δ(ΨHF ) ≤ (n ∨ p)c2 − 2(2k − n ∧ p− 1)c,

which is non positive since Condition (13) holds.
It is worth noting that, in the case where m > p > n, the improvement condition in (13) coincides

with the one given in Kubokawa and Srivastava [10] for the orthogonally invariant Haff-type estimator.
Actually, the roles of (Q−)T and Λ−1 are respectively played by the eigenvectors matrix H and the
eigenvalues L of S. This is due to the fact that the data-based loss (2) coincides with their loss function
for the class of orthogonally invariant estimators (see Remark A.4).

2.2.2. A Stein type estimator. Let

Σ̂−1
ΨST = ao

(
S+ + (Q−)

T
ΨSTQ−

)
with ψST

i =
2i− n ∧ p− 1

n ∨ p
(14)

for i = 1, . . . , k. We will see that Σ̂−1
ΨST improves over Σ̂−1

o .

Applying Theorem 1, δ(Ψ) in (10) becomes

δ(ΨST ) =
k∑

i=1

{
(n ∨ p)(ψST

i )2 − 2(2k − n ∧ p− 1)ψST
i + 4λi

∂ψST
i

∂λi
+ 4

∑
j>i

λiψ
ST
i − λjψ

ST
j

λi − λj

}
.

Note that
k∑

i=1

∑
j>i

λiψ
ST
i − λjψ

ST
j

λi − λj
=

k∑
i=1

∑
j>i

ψST
i +

k∑
i=1

∑
j>i

λi

ψST
i − ψST

j

λi − λj
.

Using the fact that, for any j > i, λj < λi, and ψST
j > ψST

i , we have

k∑
i=1

∑
j>i

λi

ψST
i − ψST

j

λi − λj
≤ 0.

Then
k∑

i=1

∑
j>i

λiψ
ST
i − λjψ

ST
j

λi − λj
≤

k∑
i=1

∑
j>i

ψST
i =

k∑
i=1

(k − i)ψST
i .
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Therefore, according to (14), an upper bound of δ(ΨST ) is given by

δ(ΨST ) ≤
k∑

i=1

{
(n ∨ p)(ψST

i )2 − 2(2i − n ∧ p− 1)ψST
i

}
= −(n ∨ p)

k∑
i=1

(ψST
i )2,

which is non positive, and hence the result follows.

2.3. Truncated Estimators

In this subsection, we present new estimators which are truncated versions of the estimators con-
sidered in Subsection 2.2. This consists in replacing in (8) the function Ψ by ΨTR = diag

(
ψTR
i

)
i=1,...,k

where, for any i = 1, . . . , k,

ψTR
i = max

{
ψi,

m+ n ∨ p

ao(1 + λi)
− 1

}
.

Thus, the corresponding truncated estimators are of the form

(Σ̂−1
Ψ )TR = ao

(
S+ + (Q−)

T
ΨTRQ−

)
. (15)

The following theorem yields a dominance result of the truncated estimators in (15) over the non
truncated estimators in (8).

Theorem 2. Let Ψ(Λ) = diag (ψ1(Λ), . . . , ψi(Λ), . . . , ψk(Λ)) be a k × k diagonal matrix function
of Λ in (6) such that, for any i = 1, . . . , k, the function λi �→ ψi (λ1, . . . , λi, . . . , λk) is absolutely
continuous and non negative.

Any truncated estimator of the form (Σ̂−1
Ψ )TR in (15) dominates the non-truncated estimator

Σ̂−1
Ψ in (8), provided that Pr(ΨTR 
= Ψ) > 0.

Proof. According to (11), the risk difference between Σ̂−1
ΨTR in (15) and Σ̂−1

Ψ in (8) is expressed as

Δ(ΨTR) = a2oEθ,Σ

[
tr((ΨTR)2 −Ψ2)

]
+ 2a2oEθ,Σ

[
tr(ΨTR −Ψ)

]

− 2aoEθ,Σ

[
tr(Σ−1Q(ΨTR −Ψ)QT )

]
,

where the diagonal elements of ΨTR −Ψ are non-negative. Applying Lemma A.2 with Φ = ΨTR −Ψ,
an upper bound for the risk difference is given by

Δ(ΨTR) ≤ 2a2oEθ,Σ

[
tr(ΨTR −Ψ)

]
+ a2oEθ,Σ

[
tr((ΨTR)2 −Ψ2)

]

− 2ao(m+ n ∨ p)Eθ,Σ

[
tr(
{
ΨTR −Ψ

}
(Ik + Λ)−1)

]

= a2oEθ,Σ

[
k∑

i=1

{(
ψTR
i − ψi

)(
ψTR
i + ψi − 2

(
m+ n ∨ p

ao(1 + λi)
− 1

))}]
.

Let I the sub-set of {1, . . . , k} such that ψTR
i 
= ψi, and hence, such that

ψTR
i =

m+ n ∨ p

ao(1 + λi)
− 1.

By assumption, I 
= ∅ with positive probability. Therefore

Δ(ΨTR) ≤ a2oEθ,Σ

[∑
i∈I

−
(
ψTR
i − ψi

)2
]
< 0,

which guarantees domination of the truncated estimators in (15) over the non-truncated estima-
tors in (8). �

Remark 2. Continuing Remark 1, the choice of the loss function (2) works in favor of our group of
truncated estimators in (15) in the sense that, thanks to the presence of the statistics S, it allows to
highlight that these estimators clearly improve over the usual estimators aS+.
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18 HADDOUCHE, FOURDRINIER

Theorem 2 applies to the examples given in Subsection 2.2. Thus, the Haff type estimator in (12) is
dominated by the truncated Haff type estimator

(Σ̂−1
ΨHF )

TR = ao

(
S+ + (Q−)

T (
ΨHF

)TR
Q−
)

(16)

where

(
ΨHF

)TR
= diag

(
max

{
c

λ−1
i

tr(Λ−1)
,
m+ n ∨ p

ao(1 + λi)
− 1

})

i=1,...,k

.

As for the Stein-type estimator in (14), it is dominated by the truncated Stein-type estimator

(Σ̂−1
ΨST )

TR = ao

(
S+ + (Q−)

T (
ΨST

)TR
Q−
)

(17)

where
(
ΨST

)TR
= diag

(
max

{
2i− n ∧ p− 1

n ∨ p
,
m+ n ∨ p

ao(1 + λi)
− 1

})

i=1,...,k

.

3. NUMERICAL STUDY

In this section, although we formally proved in Subsection 2.3 that the non-truncated estimators are
dominated by the truncated estimators, we illustrate numerically this performance. While we do not
have a theoretical result, it is also interesting to compare the truncated estimators with the orthogonally
invariant estimators.

To this end, we consider the following structures of the scatter matrix Σ: the identity matrix Σ1 = Ip
and an autoregressive structure Σ2 with coefficient 0.9 (i.e., a p× p matrix where the (i, j)th element
is 0.9|i−j|). As for the mean matrix θ, we deal with: a random matrix θ1 where the (i, j)th element
is generated from a uniform distribution over [0, 1) and the null matrix θ2 = 0m×p. To assess how an
alternative estimator Σ̂−1 improves over Σ̂−1

o , we compute the percentage reduction in average loss
(PRIAL), defined as

PRIAL(Σ̂−1) =
average loss of Σ̂−1

o − average loss of Σ̂−1

average loss of Σ̂−1
o

,

based on independent Monte-Carlo replications.

3.1. Comparison of Truncated and Non-Truncated Estimators

We compare here the performance of the following estimators:

• Σ̂−1
ΨHF

given in (12) with c = 2(2k − n ∧ p− 1)/(n ∨ p);

• (Σ̂−1
ΨHF

)TR given in (16);

• Σ̂−1
ΨST

given in (14);

• (Σ̂−1
ΨST

)TR given in (17).

Note that the value of c we consider is the upper bound in (13) which turns out to provide higher Prial’s
in the range of the values of c allowed by (13). This choice is all the more legitimate as we have observed,
in other simulations we have not reproduced here, that there exists a range of values of c, larger than the
one that our theory provides, for which Σ̂−1

ΨHF
improves over Σ̂−1

o .

Table 1 shows the results based on 10 000 independent Monte-Carlo replications for all possible pairs
of Σ and θ structures. The values of m,n, and p are chosen from all possible combinaisons of 15, 30,
and 45.
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Table 1. Prial’s (%) of the proposed estimators based on 10 000 independent Monte–Carlo replications for any
ordering of m,n, and p

Σ θ m n p Σ̂−1
ΨHF Σ̂−1

ΨST (Σ̂−1
ΨHF )

TR (Σ̂−1
ΨST )

TR

Σ1

θ1

30 15 45 6.921 27.603 17.134 31.538

15 30 45 –0.008 14.47 0.355 15.265

15 45 30 –0.008 14.408 0.348 15.194

45 15 30 10.669 41.99 29.387 49.847

45 30 15 10.659 41.487 29.172 49.204

30 45 15 6.928 27.539 17.142 31.463

θ2

30 15 45 6.938 29.557 17.747 33.839

15 30 45 –0.007 14.835 0.363 15.682

15 45 30 –0.008 14.791 0.374 15.647

45 15 30 10.739 44.31 30.513 52.758

45 30 15 10.739 44.373 30.462 52.78

30 45 15 6.92 29.564 17.65 33.793

Σ2

θ1

30 15 45 6.802 24.836 13.381 26.672

15 30 45 –0.008 14.269 0.321 14.928

15 45 30 –0.008 14.436 0.355 15.229

45 15 30 10.554 39.147 24.985 44.361

45 30 15 10.706 41.212 29.181 48.953

30 45 15 6.902 27.086 16.992 30.93

θ2

30 15 45 6.86 25.971 14.081 28.091

15 30 45 –0.008 14.665 0.345 15.416

15 45 30 –0.008 14.796 0.365 15.642

45 15 30 10.654 40.822 26.553 46.868

45 30 15 10.703 44.469 30.268 52.723

30 45 15 6.973 29.591 17.881 33.941

The results reveal that, on the whole, the behavior of the estimators does not change significantly with
respect to the structures ofΣ and θ and, for any pair, the best performances are obtained in the case where
m > n ∧ p. Note that the truncated estimators dominate the non-truncated estimators, the truncated
Stein type estimator (Σ̂−1

ΨST )
TR (Σ̂−1

ΨST )
TR outperforming the others with Prial’s that can reach 52%.

Note also that, in the case where 2m− n ∧ p− 1 < 0 so that condition (13) cannot be satisfied, the Haff
type estimator Σ̂−1

ΨHF fails to dominate the usual estimator Σ̂−1
o . For example, when m = 15, n = 30,

and p = 45, the Prial’s are negative.

3.2. Comparison of Truncated and Orthogonally Invariant Estimators

We compare numerically the performance of the truncated estimators (Σ̂−1
ΨHF )

TR and (Σ̂−1
ΨST )

TR with
their respectively orthogonally invariant versions

(Σ̂−1
ΨHF )

OI = ao
(
S+ +HΨHFHT

)
with ψHF

i = c
li

tr(L)
for c =

2(n ∧ p− 1)

n ∨ p
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Fig. 1. Effect of m on the truncated and the orthogonally invariant estimators for (n, p) = (40, 80). The structures of
Σ and θ are respectively Σ1 and θ1.

and

(Σ̂−1
ΨST )

OI = ao
(
S+ +HΨSTHT

)
with ψST

i =
2i− n ∧ p− 1

n ∨ p
,

where i = 1, . . . , n ∧ p and where H and L are defined at the beginning of Subsection 2.1.

Note that analytical dominance results of such estimators over Σ̂−1
o have been given by many

authors (see Remark A.4). In this study, we compare their numerical performance with the truncated
estimators (16) and (17).

Figure 1 shows the Prial’s of the estimators (Σ̂−1
ΨHF )

TR and (Σ̂−1
ΨST )

TR and their respective cor-

responding orthogonally invariant estimators (Σ̂−1
ΨHF )

OI and (Σ̂−1
ΨST )

OI based on 5000 independent
Monte-Carlo replications. We consider the structures Σ1 and θ1 for Σ and θ where the couple (n, p)
is fixed to (40, 80) and m = 1, . . . , 500. Thus we encounter tricky cases since the sample covariance
matrix S is non-invertible (n < p).

The important point to note here is that the risks of a truncated estimator (continuous lines) and of its
corresponding orthogonally invariant (discountinuous lines) intersect, these last estimators presenting
an almost constant risk. Also, the performance of both truncated estimators increases as m increases
with trend changing around m = n = 40, the Stein’s truncated estimator outperforming the others from
m = 180.

4. CONCLUSIONS AND PERSPECTIVES

In this paper, we proposed an improved class of a non-truncated estimators of the scatter matrix
Σ−1 depending not only on the sample covariance matrix S, such as orthogonally invariant estimators,
but also on the information contained in the sample mean Z. This allowed us to construct truncated
estimators that outperform these non-truncated estimators. Numerical results show that the risks of
the truncated estimators and their corresponding orthogonally invariant estimators intersect and that
the truncated estimators outperform the orthogonally invariant estimators when m → ∞. This result
needs to be proved analytically. It would be of interest to extend the results of this paper to the case of
normal mixture distributions with respect to Σ and, more generally, to the case of elliptically symmetric
distributions.

APPENDIX A

We provide here materials for the proofs of Theorems 1 and 2 where we place ourselves in the context
of Lemma A.3 at the end of this appendix.

MATHEMATICAL METHODS OF STATISTICS Vol. 33 No. 1 2024



TRUNCATED ESTIMATORS FOR A PRECISION MATRIX 21

A.1. A Stein–Haff Identity

A key tool for the proof of these theorems is the Stein–Haff identity given in the following lemma.

Lemma A.1 (Equation (4.4) of Tsukuma and Kubokawa [17]). Let Z and U two random matrices
with respective dimension m× p and an n× p such that (ZT , UT )T has joint density

(2π)−(m+n)p/2|Σ|−(m+n)/2 exp[−tr{(z − θ)Σ−1(z − θ)T + uΣ−1uT }/2]. (A.1)

Let Q and Λ as in (A.7) and let also Φ(Λ) = diag (φ1(Λ), . . . , φi(Λ), . . . , φk(Λ)) be a k× k diagonal
matrix such that, for any i = 1, . . . , k, the function λi �→ φi (λ1, . . . , λi, . . . , λk) is absolutely
continuous.

Assuming that Eθ,Σ

[
|tr(Σ−1QΦQ�)|

]
< ∞, where Eθ,Σ denotes the expectation with respect to

(A.1), we have

Eθ,Σ

[
tr(Σ−1QΦQ�)

]
= Eθ,Σ

⎡
⎣

k∑
i=1

{
αiφi − 2λi

∂φ

∂λi
− 2

k∑
j>i

φi − φj

λi − λj
λj

}⎤
⎦ , (A.2)

where

∀i = 1, . . . , k αi = |n− p|+ 2i− 1.

Remark A.3. Throughout this paper, we use the modified version of identity (A.2) given in (A.4)
below. This identity is established as follows. As for j > i = 1, . . . , k we have

φi − φj

λi − λj
λj =

φiλi − φjλj

λi − λj
− φi

and
k∑

j>i

φi − φj

λi − λj
λj =

k∑
j>i

φiλi − φjλj

λi − λj
− (k − i)φi (A.3)

since
k∑

j>i

φi = (k − i)φi.

Then substituting (A.3) for (A.2) gives

Eθ,Σ

[
tr
(
Σ−1QΦQT

)]

= Eθ,Σ

⎡
⎣

k∑
i=1

{
(n ∨ p− n ∧ p+ 2k − 1)φi − 2λi

∂φi

∂λi
− 2

∑
j>i

λiφi − λjφj

λi − λj

}
⎤
⎦ (A.4)

since

αi + 2(k − i) = n ∨ p− n ∧ p+ 2k − 1.

A.2. The Case where k = n ∧ p

Note that, as mentioned at the beginning of Subsection 2.2, when k = n ∧ p, the estimators in (8)
can be rewritten as Σ̂−1

Φ = (Q−)TΦQ−) where Φ = ao (Ik +Ψ). Although not used in the rest of the
article, for completeness, we give the risk of such estimators in the following proposition.

Proposition A.1. Let Q and Λ as in (A.7) below and let Φ = diag
(
φ1(Λ), . . . , φi(Λ), . . . , φk(Λ)

)
be a k × k diagonal matrix such that, for any i = 1, . . . , k, the function λi �→ φi (λ1, . . . , λi, . . . , λk)
is absolutely continuous and non-negative.
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The risk function in (3) of the estimator Σ̂−1
Φ = (Q−)TΦQ− is given by

R
(
Σ−1, Σ̂−1

Φ

)
= Eθ,Σ

⎡
⎣

k∑
i=1

⎧
⎨
⎩φ2

i − 2(n ∨ p− n ∧ p+ 2k − 1)φi + 4λi
∂φi

∂λi
+ 4

∑
j>i

λiφi − λjφj

λi − λj

⎫
⎬
⎭

⎤
⎦

+ Eθ,Σ

[
tr
(
Σ−1S

)2]
.

Remark A.4. When m > p > n, for the class of orthogonally invariant estimators, the risk expression
in Proposition A.1 parallels the one associated to the data-based loss tr[(Σ̂−1 − Σ−1)2S2] provided by
Kubokawa and Srivastava [10] in their Proposition 2.12 where the role of the λi’s is played by l−1

i ’s. They
showed that these estimators, that depend only on S, improve over the optimal estimator in (4).

Proof. According to the loss function (2), the risk function of any estimators of the form Σ̂−1
Φ =

(Q−)TΦQ− is expressed as

R
(
Σ−1, Σ̂−1

Φ

)
= Eθ,Σ

[
tr
(
Σ̂−1
Φ S

)2]
− 2Eθ,Σ

[
Σ−1SΣ̂−1

Φ S
]
+ Eθ,Σ

[
tr
(
Σ−1S

)2]

= Eθ,Σ

[
tr
(
(Q−)

T
ΦQ−S

)2]
+ Eθ,Σ

[
tr
(
Σ−1S

)2]− 2Eθ,Σ

[
tr
(
Σ−1S(Q−)

T
ΦQ−S

)]
.

Using the fact that S(Q−)T = Q and that Q−Q = Ik, we have

R
(
Σ−1, Σ̂−1

Φ

)
= Eθ,Σ

[
tr (Φ)2

]
− 2Eθ,Σ

[
tr
(
Σ−1QΦQT

)]
+ Eθ,Σ

[
tr
(
Σ−1S

)2]
.

Applying the Stein–Haff type identity in (A.4) to the second term in the right-hand side of the last
equality gives the desired result. �

Remark A.5. The loss function in (2) allows to get rid of the matrix Q in the expression of the risk
of Σ̂−1

Φ through the fact that Q− is the left inverse of Q and thanks to the Stein–Haff type identity in
Proposition A.4. Such a simplification does not occur with the usual quadratic loss tr[(Σ̂−1 − Σ−1)2]

and with the data-based losses tr[(Σ̂−1 − Σ−1)2Sr] used by Kubokawa and Srivastava [10] for r = 1, 2.
The choice of our loss function works in favor of our group of truncated estimators in (15) in the sense
that, thanks to the presence of the statistics S, it allows to highlight that these estimators clearly improve
over the usual estimators aS.

A.3. Determination of the Optimal Constant “ao”

Here, we prove the statement in (4). The risk of aS+ equals

R
(
Σ−1, aS+

)
= Eθ,Σ

[
tr
[(

Σ̂−1
o − Σ−1

)
S
]2]

= a2Eθ,Σ

[
tr
(
S+SS+S

)]
− 2aEθ,Σ

[
tr
(
Σ−1SS+S

)]
+ Eθ,Σ

[
tr
(
Σ−1S

)2]

= a2(n ∧ p)− 2aEθ,Σ

[
tr
(
Σ−1S

)]
+ Eθ,Σ

[
tr
(
Σ−1S

)2]
,

where we used the fact thatS+SS+S = S+S, tr
(
S+S

)
= n∧ p and SS+S = S. Clearly, this polynomial

in a is minimized for

a = ao =
Eθ,Σ

[
tr
(
Σ−1S

)]
n ∧ p

. (A.5)

Note that this expression does not depend on θ orΣ. Indeed, according to Lemma 2.1 of Haddouche et al.
[7], if G(z, s) be a p× p matrix function such that, for any fixed z ∈ R

m×p, G(z, s) is weakly differentiable
with respect to s ∈ R

p×p and such that Eθ,Σ

[
|tr(Σ−1G(Z,S))|

]
< ∞, we have

Eθ,Σ

[
tr
(
Σ−1SS+G(Z,S)

)]
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= Eθ,Σ

[
tr
(
2SS+Ds{SS+G(Z,S)}T + (n− n ∧ p− 1)S+G(Z,S)

)]
, (A.6)

where Ds{·} is the Haff operator whose generic element is 1
2(1+ δij)

∂
∂Sij

,with δij = 1 if i = j and δij = 0

if i 
= j. Using (A.6) with G(Z,S) = S it follows that

Eθ,Σ

[
tr
(
Σ−1S

)]
= Eθ,Σ

[
tr
(
Σ−1SS+S

)]

= Eθ,Σ

[
tr
(
2SS+Ds{S} + (n − n ∧ p− 1)S+S

)]
.

Now, according to Lemma A.6 of Haddouche et al. [7], we have

2SS+Ds{S} = (p+ 1)SS+,

so that, as tr
(
SS+

)
= n ∧ p, it follows that

Eθ,Σ

[
tr
(
Σ−1S

)]
= (p+ 1)(n ∧ p) + (n− n ∧ p− 1)(n ∧ p) = (n ∨ p)(n ∧ p).

Hence, according to (A.5), a0 = n ∨ p.

Remark A.6. The optimal constant ao = n ∨ p with respect to our data-based loss and the one in
Kubokawa and Srivastava [10] are identical when p > n. This is not surprising since theses data-based
losses coincide for the class of orthogonally invariant estimators as Σ̂−1

a as mentioned in Remark 2.

A.4. A Fundamental Inequality

The following lemma is a key tool for the proof of Theorem 2.

Lemma A.2 (Theorem 3.1 of Tsukuma and Kubokawa [17]). Let Q andΛ as in (A.7) below. Let also
Φ = diag

(
φ1(Λ), . . . , φi(Λ), . . . , φk(Λ)

)
be a k × k diagonal matrix such that, for any i = 1, . . . , k,

the function λi �→ φi (λ1, . . . , λi, . . . , λk) is absolutely continuous and non negative. Then

Eθ,Σ

[
tr(Σ−1QΦQT )

]
≥ (m+ n ∨ p)Eθ,Σ

[
tr(Φ(Ik + Λ)−1)

]
.

A.5. A Simultaneous Diagonalization Result

Here, we give a simultaneous diagonalization lemma of two matrices in the context of (5) and (7).

Lemma A.3 (Simultaneous diagonalization). For Z and U two matrices with dimension m× p
and n× p, respectively, let S = UTU with rank(S) = n ∧ p and W = ZTZ with rank(W ) = m ∧ p.
Let S = HLHT the eigenvalue decomposition of S where L = diag(l1 > · · · > li > · · · > ln∧p > 0)
is the (n∧ p)× (n∧ p) diagonal matrix of the positive eigenvalues of S andH the p× (n∧ p) semi-
orthogonal matrix (HTH = In∧p) of the corresponding eigenvectors. Let also k = n ∧m ∧ p.

Then there exists a k × p matrix Q− such that the following simultaneous diagonalization of
W and S holds

Q−W (Q−)
T
= Λ and Q−S(Q−)

T
= Ik, (A.7)

where the k × k diagonal matrix Λ intervenes in the thin singular value decomposition of
ZHL−1/2, that is,

ZHL−1/2 = RΛ1/2OT (A.8)

with

Λ = diag(λ1 > · · · > λi > · · · > λk > 0),

O an (n ∧ p)× k semi-orthogonal matrix (OTO = Ik) and R an m× k semi-orthogonal matrix
(RTR = Ik). More precisely, we have Q− = OTL−1/2HT .
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Besides, Q− is the reflexive generalized inverse1) of Q = HL1/2O, which are respectively k × p
and p× k matrices. Also, Q− is a left inverse of Q, that is,

Q−Q = Ik. (A.9)

In addition, we have

S(Q−)
T
= Q and Q−S = QT , (A.10)

SS+Q = Q (A.11)

and

QTS+Q = Ik, (A.12)

where S+ = HL−1HT is the Moore–Penrose inverse of S.
Proof. Through the expressions of Q− and W we have

Q−W (Q−)
T
= OTL−1/2HTZTZHL−1/2O

= OTOΛ1/2RTRΛ1/2OTO according to (A.8)

= Λ thanks to the semi-orthogonality of R and O.

This is the first diagonalization in (A.7). As for the second diagonalization in (A.7), we can write,
according to the expression of Q− and to the eigenvalue decomposition of S,

Q−S(Q−)
T
= OTL−1/2HTHLHTHL−1/2O = Ik,

thanks to the semi-orthogonality of H and O.
Now, with the same semi-orthogonality arguments, (A.9) follows immediately from

Q−Q = OTL−1/2HTHL1/2O = Ik

and (A.10) from

S(Q−)
T
= HLHTHL−1/2O = HL1/2O = Q

and

Q−S = OTL−1/2HTHLHT = OTL1/2HT = QT .

Finally, Equalities (A.11) and (A.12) are obtained as follows

SS+Q = HLHTHL−1HTHL1/2O = HL1/2O = Q

and

QTS+Q = OTL1/2HTHL−1HL1/2O = Ik.

�
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