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a b s t r a c t

We consider here the problem of estimating the p × p scale matrix Σ of a multivariate
linear regression model when the distribution of the observed matrix belongs to a large
class of elliptically symmetric distributions. Any estimator Σ̂ of Σ is assessed through
the data-based loss tr

(
S+Σ (Σ−1Σ̂− Ip)2

)
where S is the sample covariance matrix and

S+ is its Moore–Penrose inverse.
© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Let consider the multivariate linear regression model, with p responses and n observations,

Y = X β + E , (1)

here Y is an n × p matrix, X is an n × q matrix of known constants of rank q ≤ n and β is a q × p matrix of unknown
arameters. We assume that the n×p noise matrix E has an elliptically symmetric distribution with density, with respect
o the Lebesgue measure in Rpn, of the form

ε ↦→ |Σ |
−n/2 f

(
tr( εΣ−1ε⊤)

)
, (2)

here Σ is a p × p unknown positive definite matrix and f (·) is a non-negative unknown function.
The model (1) has been considered by various authors such as Kubokawa and Srivastava (1999, 2001), who estimated
and β respectively in the context (2), and Tsukuma and Kubokawa (2016), who estimated Σ in the Gaussian setting.
common alternative representation of this model is Y = M + E , where E is as above and M is in the column space of
, has been also considered in the literature. See for instance Candès et al. (2013) and Canu and Fourdrinier (2017).
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Although the matrix of regression coefficients β is also unknown, we are interested in estimating the scale matrix Σ .
e address this problem under a decision-theoretic framework through a canonical form of the model (1), which allows

o use a sufficient statistic S = U⊤ U for Σ , where U is an (n − q) × p matrix (see Section 2 for more details). In this
ontext, the natural estimators of Σ are of the form

Σ̂a = a S where a > 0. (3)

As pointed out by James and Stein (1961), the estimators of the form (3) perform poorly in the Gaussian setting. In fact,
arger (smaller) eigenvalues ofΣ are overestimated (underestimated) by those estimators. Thus we may expect to improve
hese estimators by shrinking the eigenvalues of S, which gives rise to the class of orthogonally invariant estimators
see Takemura, 1984). Since the seminal work of James and Stein (1961), this problem has been largely considered in the
aussian setting. See, for instance, Tsukuma (2016) and Chételat and Wells (2016). However, the elliptical setting has
een considered by a few authors such as Kubokawa and Srivastava (1999) and Haddouche et al. (2021).
In this paper, the performance of any estimator Σ̂ of Σ is assessed through the data-based loss

LS(Σ̂,Σ) = tr
(
S+Σ

(
Σ−1Σ̂ − Ip

)2) (4)

nd its associated risk

R(Σ̂,Σ) = Eθ,Σ
[
LS(Σ̂,Σ)

]
, (5)

here Eθ,Σ denotes the expectation with respect to the density specified below in (9) and where S+ is the Moore–Penrose
nverse of S. Note that, when p > n − q, S is non-invertible and, when p ≤ n − q, S is invertible so that S+ coincides
ith the regular inverse S−1. This type of loss is called data-based loss in so far as it contains a part of the observation U

through S = U⊤ U . The notion of data-based loss was introduced by Efron and Morris (1976) when estimating a location
parameter. Likewise, Fourdrinier and Strawderman (2015) showed the interest of considering such a data-based loss with
respect to the usual quadratic loss (see (6) below). Also, the data-based loss (4) was considered, in a Gaussian setting,
by Tsukuma and Kubokawa (2015) who were motivated by the difficulty to handle the standard quadratic loss

L(Σ̂,Σ) = tr
(
Σ−1Σ̂ − Ip

)2
. (6)

See Tsukuma (2016) for more details. Thus the loss in (4) is a data-based variant of (6), through which we aim to improve
on the estimators Σ̂a in (3) using alternative estimators, focusing on orthogonally invariant estimators. Note that most
improvement results, in the Gaussian case, were derived thanks to Stein–Haff type identities. Here, we specifically use
the Stein–Haff type identity given by Haddouche et al. (2021), in the elliptical case, to establish our dominance result,
which is well adapted to our unified approach to the cases S invertible and S non-invertible.

The rest of this paper is structured as follows. In Section 2, we give conditions for improving the proposed estimators
over the usual estimators. In Section 3, we assess the quality of the proposed estimators through a simulation study in
the context of the t-distribution. We also compare numerically our results with those of Konno (2009) in the Gaussian
setting. We give, in an Appendix (given as a supplementary material), all the proofs of our findings.

2. Main result

Although we are interested in estimating the scale matrix Σ , recall that β is a q × p matrix of unknown parameters.
Note that, since X has full column rank, the least squares estimator of β is β̂ = (X⊤X)−1 X⊤Y ; this is the maximum
likelihood estimator in the Gaussian setting. Natural estimators of the scale matrix Σ are based on the residual sum of
squares given by

S = Y⊤ (In − PX ) Y , (7)

where PX = X(X⊤X)−1X⊤ is the orthogonal projector onto the subspace spanned by the columns of X .
Following the lines of Tsukuma and Kubokawa (2020), we derive the canonical form of the model (1) which allows

a suitable treatment of the estimation of Σ . Let X = Q1 T⊤ be the QR decomposition of X where Q1 is a n × q semi-
orthogonal matrix and T a q× q lower triangular matrix with positive diagonal elements. Setting m = n− q, there exists
a n × m semi-orthogonal matrix Q2 which completes Q1 such that Q = (Q1Q2) is an n × n orthogonal matrix. Then, since
Q⊤

2 X β = Q⊤

2 Q1 T⊤ β = 0, we have

Q⊤ Y =

(
Z
U

)
=

(
Q⊤

1

)
X β + Q⊤E =

(
θ

0

)
+ Q⊤E , (8)

where Q⊤

1 X β = θ and where Z and U are, respectively, q × p and m × p matrices. As X = Q1 L⊤, the projection matrix
PX satisfies PX = Q1 L⊤(L⊤ L)−1L Q⊤

1 = Q1 Q⊤

1 so that In − PX = Q2 Q⊤

2 . It follows that (7) becomes S = Y⊤Q2 Q⊤

2 Y = U⊤ U ,
according to (8), which is a sufficient statistic for Σ .
2
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The orthogonal matrix Q provides a linear reduction from n to q observations within each of the p responses. In
addition, according to (2), the density of Q⊤E is the same as that of E , and hence, (Z⊤U⊤)⊤ has an elliptically symmetric
distribution about the matrix (θ⊤0⊤)⊤ with density

(z, u) ↦→ |Σ |
−n/2 f

(
tr (z − θ )Σ−1 (z − θ )⊤ + tr uΣ−1 u⊤

)
, (9)

where θ and Σ are unknown. In this sense, the model (8) is the canonical form of the multivariate linear regression model
(1). Note that the marginal distribution of U = Q⊤

2 Y is elliptically symmetric about 0 with covariance matrix proportional
to Im ⊗Σ (see Fang and Zhang, 1990). This implies that S = U⊤ U has a generalized Wishart distribution (see Díaz-Gacía
and Gutiérrez-Jámez, 2011), which coincides with the standard (singular or non-singular) Wishart distribution in the
Gaussian setting (see Srivastava, 2003).

As mentioned in Section 1, we propose alternative estimators; they are of the form

Σ̂J = a (S + J) , (10)

where J = J(Z, S) appears as a correction matrix. The improvement over the class of estimators Σ̂a can be done by
improving over the best estimator Σ̂ao = ao S within this class, namely, the estimator which minimizes the risk (5). It is
proved in the Appendix that

Σ̂ao = ao S , with ao =
1

K ∗ v
and v = max{p,m} , (11)

here K ∗ is the normalizing constant (assumed to be finite) of the density defined by

(z, u) ↦→
1
K ∗

|Σ |
−n/2 F∗

(
tr (z − θ )Σ−1 (z − θ )⊤ + tr uΣ−1 u⊤

)
, (12)

here, for any t ≥ 0, F∗(t) =
1
2

∫
∞

t f (ν) dν . Note that under the loss (6) the optimal constant is 1/K ∗(p+m+1). Of course,
his risk optimality has sense only if the risk of Σ̂ao is finite. As shown in Haddouche (2019), this is the case as soon as
θ,Σ

[
tr

(
Σ−1S

)]
< ∞ and Eθ,Σ

[
tr

(
Σ S+

)]
< ∞, which can be reduced to Eθ,Σ

[
tr

(
S
)]
< ∞ and Eθ,Σ

[
tr

(
S+

)]
< ∞ by

ubmultiplicativity of the trace for semi-definite positive matrices. In order to give a unified dominance result of Σ̂J over
Σ̂ao for the two cases where S is non-invertible and where S is invertible, we consider, as a correction matrix in (10), the
projection of a matrix function G(Z, S) = G on the subspace spanned by the columns of SS+, namely,

J = SS+G . (13)

n addition to the risk finiteness conditions of Σ̂ao , it can be shown that the risk of Σ̂J is finite as soon as the expectations
θ,Σ

[
∥Σ−1SS+G∥

2
F

]
and Eθ,Σ

[
∥S+G∥

2
F

]
are finite, where ∥·∥F denotes the Frobenius norm. Note that Eθ,Σ

[
∥Σ−1SS+G∥

2
F

]
<

∞ reduces to Eθ,Σ
[
∥SS+G∥

2
F

]
< ∞ by submultiplicativity of the Frobenius norm. Under these conditions, the risk

difference between Σ̂J and Σ̂ao is

∆(G) = a2oEθ,Σ
[
tr

(
Σ−1 SS+ G{Ip + S+G + SS+

}
)]

− 2 ao Eθ,Σ
[
tr

(
S+ G

)]
. (14)

oticing that the first integrand term in (14) depends on the unknown parameter Σ−1, our approach consists in replacing
his integrand term by a random matrix δ(G), which does not depend on Σ−1, such that Eθ,Σ

[
tr

(
Σ−1 SS+ G{Ip + S+G +

SS+
}
)]

= E∗

θ,Σ

[
δ(G)

]
, where E∗

θ,Σ denotes the expectation with respect to the density (12). To this end, we rely on the
following Stein–Haff type identity, which is based on the notion of weak differentiability naturally involved in Stein’s
lemma (see Fourdrinier et al., 2018 for more details).

Lemma 1 (Haddouche et al., 2021). Let G(z, s) be a p×p matrix function such that, for any fixed z, G(z, s) is weakly differentiable
with respect to s. Assume that Eθ,Σ

[
|tr(Σ−1S S+ G)|

]
< ∞. Then we have

Eθ,Σ
[
tr

(
Σ−1 SS+ G

)]
= K ∗ E∗

θ,Σ

[
tr

(
2 SS+ Ds{SS+G}

⊤
+ (m − r − 1) S+ G

) ]
, (15)

here r = min{p,m} and Ds{·} is the Haff operator whose generic element is 1
2 (1 + δij) ∂

∂Sij
, with δij = 1 if i = j and δij = 0

if i ̸= j.

Note that the existence of the expectations in (15) is implied by the above risk finiteness conditions. Applying Lemma 1
to the term depending on Σ−1 on the right-hand side of (14) gives

∆(G) = a2o K
∗ E∗

θ,Σ

[
(m − r − 1) tr

(
S+G + (S+G)2 + S+GSS+

)
+ 2 tr

(
SS+ Ds{SS+G + SS+GS+G + SS+ G SS+

}
⊤
)]

− 2 ao Eθ,Σ
[
tr

(
S+ G

)]
. (16)

It is worth noticing that the risk difference in (16) depends on the Eθ,Σ and E∗

θ,Σ expectations (which coincide in the
Gaussian setting since F∗

= f ). Thus, in order to derive a dominance result, we need to compare these two expectations.
A possible approach consists in restricting us to the subclass of densities verifying c ≤ F∗(t)/f (t) ≤ b, for some positive
3
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constants c and b (see Berger, 1975 for the class where c ≤ F∗(t)/f (t)). Due to the complexity of the use of the quadratic
oss in (6) (which necessitates a twice application of the Stein–Haff type identity (15)), this subclass was considered
y Haddouche et al. (2021). Here, thanks to the data-based loss (4), we are able to avoid such a restriction, and hence,
o deal with a larger class of elliptically symmetric distributions in (9) (subject to the moment conditions induced by the
bove finiteness conditions).
Following the suggestion to shrink the eigenvalues of S mentioned in Section 1, we consider as a correction matrix

matrix SS+G with G orthogonally invariant in the following sense. Let S = H LH⊤ be the eigenvalue decomposition
f S where H is a p × r semi-orthogonal matrix of eigenvectors and L = diag(l1, . . . , lr ), with l1 >, . . . , > lr , is the
iagonal matrix of the r positive corresponding eigenvalues of S (see Kubokawa and Srivastava, 2008 for more details).
hen set G = H LΨ (L)H⊤, with Ψ (L) = diag(ψ1(L), . . . , ψr (L)) where ψi = ψi(L) (i = 1, . . . , r) is a differentiable function
f L. Consequently, by semi-orthogonality of H , we have SS+H = H H⊤H = H , so that the correction matrix in (13) is
= SS+G = G = H LΨ (L)H⊤ and S+G = H Ψ (L)H⊤. Thus the alternative estimators that we consider are of the form

Σ̂Ψ = ao
(
S + H LΨ (L)H⊤

)
= ao H L

(
Ir + Ψ (L)

)
H⊤ , (17)

hich are usually called orthogonally invariant estimators (i.e. equivariant under orthogonal transformations). See for
nstance Takemura (1984).

Now, adapting the risk finiteness conditions mentioned above, we are in a position to give our dominance result of
he alternative estimators in (17) over the optimal estimator in (11), under the data-based loss (4).

heorem 1. Assume that the expectations Eθ,Σ
[
tr(S)

]
, Eθ,Σ

[
tr(S+)

]
, Eθ,Σ

[
∥HLΨ (L) H⊤

∥
2
F

]
and Eθ,Σ

[
∥HΨ (L)H⊤

∥
2
F

]
are finite.

et Ψ (L) = diag(ψ1, . . . , ψr ) where ψi = ψi(L) (i = 1, . . . , r) is differentiable function of L with tr
(
Ψ (L)

)
≥ λ, for a fixed

ositive constant λ.
Then an upper bound of the risk difference between Σ̂Ψ and Σ̂ao under the loss (4) is given by

∆(Ψ (L)) ≤ a2o K
∗ E∗

θ,Σ

[
g(Ψ )

]
,

here

g(Ψ ) =

r∑
i=1

{
2(v − r + 1)ψi + (v − r + 1)ψ2

i + 4li(1 + ψi)
∂ψi

∂ li
+

r∑
j̸=i

li (2ψi + ψ2
i ) − lj(2ψj + ψ2

i )
li − lj

− 2vλ

}
. (18)

lso, Σ̂Ψ in (17) improves over Σ̂ao in (11) as soon as g(Ψ ) ≤ 0.

The proof of Theorem 1 is given in the Appendix. Note that the fact that Eθ,Σ [tr(S)] < ∞ and Eθ,Σ
[
tr(S+)

]
< ∞ is

necessary for the estimators Σ̂a to have finite risk. This is a condition on the family of distributions. Note also that the
assumptions Eθ,Σ

[
∥HLΨ (L)H⊤

∥
2
F

]
< ∞ and Eθ,Σ

[
∥HΨ (L)H⊤

∥
2
F

]
< ∞ guarantee the finiteness of the risk of Σ̂Ψ .

Although the expectation E∗

θ,Σ is associated, through F∗(·) in (12), to the generating function f (·) in (2), the function
g(Ψ ) does not depend on f (·), and hence, the improvement result in Theorem 1 is robust in that sense. Note that Theorem 1
is well adapted to deal with the James and Stein (1961) estimator where ψi(L) = 1/(v + r − 2i + 1), for i = 1, . . . , r ,
since tr

(
Ψ (L)

)
> λ = 1/(v+ r − 1), and the Efron–Morris–Dey estimator, considered by Tsukuma and Kubokawa (2020),

where ψi(L) = 1/
(
1 + b lαi /tr(L

α)
)
v, for i = 1, . . . , r and for positive constants b and α, since tr

(
Ψ (L)

)
> λ = r /(b + 1) v.

In the following, as a general example, we consider a new class of estimators which is an extension of the Haff (1980)
class, that is, estimators of the form

Σ̂α,b = ao
(
S + H LΨ (L)H⊤

)
with, for α ≥ 1 and b > 0, Ψ (L) = b

L−α

tr(L−α)
, (19)

here ao is given in (11). For α = 1, this is the estimator considered by Konno (2009), who deals with the Gaussian case
nd the quadratic loss (6), while Tsukuma and Kubokawa (2020) used an extended Stein loss. An elliptical setting was
lso considered by Haddouche et al. (2021) under the quadratic loss (6).
It is proved in the Appendix that the finiteness risk conditions of Σ̂α,b is reduced to Eθ,Σ [tr2(S)] < ∞. It is also proved

hat any estimator Σ̂α,b in (19) improves on the optimal estimator Σ̂ao in (11), under the data-based loss (4), as soon as

0 < b ≤
2 (r − 1)
v − r + 1

. (20)

t is worth noting that Tsukuma and Kubokawa (2020) gave the double inequality in Condition (20) as an improvement
ondition although their loss was different.
4
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3. Numerical study

Let the elliptical density in (2) be a variance mixture of normal distributions where the mixing variable has the
nverse-gamma distribution with shape and inverse scale parameters both equal to k/2 for k > 2. Thus, for any t ≥ 0,
he generating function f in (2) corresponds to the t-distribution with k degrees of freedom (see the Appendix). In the
following, we study numerically the performance of the alternative estimators in (19) expressed as

Σ̂α,b = ao

(
S +

b
tr(L−α)

H L1−α H⊤

)
(21)

here

0 ≤ b ≤ b0 =
2 (r − 1)
v − r + 1

nd

α ≥ 1.

As mentioned above, Konno (2009) considered the case α = 1, in the Gaussian setting and under the quadratic loss
(6), for which its improvement condition is 0 ≤ b ≤ b1 = 2 (r − 1) (v+ r + 1)/(v− r + 1) (v− r + 3). Note that, although
0 < b1, the improvement condition in (21) is valid fo any α ≥ 1 and all the class of elliptically symmetric distributions
9). However it was shown numerically by Haddouche et al. (2021) that b1 is optimal in the Gaussian context.

We consider the following structures ofΣ: (i) the identity matrix Ip and (ii) an autoregressive structure with coefficient
.9 (i.e. a p × p matrix where the (i, j)th element is 0.9|i−j|). To assess how an alternative estimator Σ̂α,b improves over
ˆ ao , we compute the PRIAL (see the Appendix) based on 1000 independent Monte Carlo replications for some couples
p,m).

Fig. 1. Effect of b on the PRIAL of Σ̂α,b , with α = 1, under data-based loss in the Gaussian setting. The structure (i) of Σ is considered for
(p,m) = (10, 25) and (p,m) = (25, 10).

In Fig. 1, we study the effect of the constant b in (21) on the prials in the non-invertible ((p,m) = (25, 10)) and
the invertible ((p,m) = (10, 25)) cases. The Gaussian setting is investigated for the structure (i) of Σ . Note that, when
0 ≤ b ≤ b0, the best prial (around 7% in both invertible and non-invertible cases) is reported for b = b0 = 1.125 (for
(v, r) = (25, 20)). For this reason, in the following, we consider the estimators Σ̂α,b0 with b0 = 2 (r −1)/(v− r +1) . Note
also that, for b > b0, the estimators Σ̂α,b still improve over Σ̂ao and that the maximum value of the prial is around 50%.
This shows that there exists a range of values of b, larger than the one that our theory provides, for which Σ̂α,b improves
over Σ̂ao .

In Fig. 2, we study the effect of α on the prials of the estimator Σ̂α,b0 over Σ̂ao = S/v when the sampling distribution is
Gaussian (K ∗

= 1 in (11)), and over Σ̂ao = S(k− 2)/vk when it is the t-distribution (K ∗ in (11) equals (k− 2)/k according
to the Appendix) with k degrees of freedom. For the structure i of Σ , note that, for α ≥ 6, the prials stabilize at 12.5%,
in the Gaussian case, and at 8.5%, in the Student’s case. Similarly, the prials are better in the Gaussian setting for the
structure (ii). In addition, it is interesting to observe that, when α is close to zero, the prials are small for the structure
(i) and may be negative for the structure (ii).

In Fig. 3, under the Gaussian assumption, we provide the prials of Σ̂α,b0 with respect to Σ̂ao = S/v under the data-based
oss (4) and the prials of Σ̂α,b1 with respect to Σ̂ao = S/(v + r + 1) under the quadratic loss (6). For the structures (i)
nd (ii), the prials are better under the data-based loss. For the structure (i) with α = 1 (which coincide with the Konno’s
stimator), we observe a prial equal to 1.73% which is similar to that of Konno (2009). Note that, under the data-based loss
he prial is much better since it equals 13.42%. We observe similar behaviors for the structure (ii) than for the structure
i), but with lower prials.
5
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Fig. 2. PRIALS of Σ̂α,b0 under the data-based loss. The non-invertible case is considered, with (p,m) = (50, 20), for the structures (i) and (ii) of Σ
for the t-distribution, with k = 5, and the Gaussian distribution.

Fig. 3. PRIALS of Σ̂α,b0 under data-based loss and PRIALS of Σ̂α,b1 under quadratic loss. The non-invertible case is considered, with (p,m) = (20, 10),
or the structures (i) and (ii) of Σ under the Gaussian distribution.

. Conclusion and perspective

For a wide class of elliptically symmetric distributions, we provide a large class of estimators of the scale matrix Σ of
he elliptical multivariate linear model (1) which improve over the usual estimators a S. We highlight that the use of the
ata-based loss (4) is more attractive than the use of the classical quadratic loss (6). Indeed, (4) brings more improved
stimators and their improvement is valid within a larger class of distributions. This means that (4) is more discriminant
han (6) to exhibit improved estimators.

While, in our theory, our improved estimators depend on (Z, S), the dependence on Z is not exploited (this is in
articular the case for our estimators in (19)). Recently, Tsukuma and Kubokawa (2016) considered, in the Gaussian case,
lternative estimators depending on S and on the information contained in the sample mean Z , showing that an estimator
or a mean could be used to improve the estimators of a covariance. In an elliptical setting, estimating a scale matrix by
uch estimators merits future investigations.
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