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Introduction



The model

Consider the following additive model

Y = M + E , E ∼ E (0mp, Im ⊗ Σ) (1.1)

where

• Y is an observed m × p matrix
• M is an unknown matrix of parameters

rank (M) = q < m ∧ p. (1.2)

• E is an elliptically symmetric noise with unknown scale matrix
(invertible) Σ.

We assume that E has a density w.r.t the Lebesgue measure in Rpm

of the form

ε 7→ |Σ|−m/2 f{tr
(
εΣ−1εT

)
} ,

for some function f (called the generating function).
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The model

The Gaussian case Σ = σ2 Ip (σ2 known)

[1] E. J. Candès, C. A. Sing-Long and J. D. Trzasko. Unbiased risk
estimates for singular value thresholding and spectral estimators.
IEEE T. Signal Process, 61 : 4643–4657, 2013.

Extension to the elliptical case (Σ known or unknown)

[2] S. Canu and D. Fourdrinier. Unbiased risk estimates for matrix
estimation in the elliptical case. Journal of multivariate analysis 158 :
60–72, 2017.

Applied setting

[10] H. Ji, C. Liu, Z. Shen, and Y. Xu, Robust video denoising using
low rank matrix completion. 2010 IEEE Computer society conference
on computer vision and pattern recognition, 1791–1798, 2010.
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The canonical form

Thanks to (1.2), there exists a m × (m − q) semi-orthogonal matrix
Q2 such that

QT
2 M = 0 .

Complete Q2 with Q1 to form an orthogonal matrix Q = (Q1Q2). Then

QT Y =

(
QT

1

QT
2

)
Y =

(
Z
U

)
=

(
QT

1

QT
2

)
M + QT E =

(
θ

0

)
+ QT E .

The density of QT E is the same as that of E . It follows that the density
of (Z T UT )T = QT Y is

(z,u) 7→ |Σ|−m/2 f
[

tr{ (z − θ)Σ−1(z − θ)T }+ tr{Σ−1 uT u}
]
. (1.3)
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Why the canonical form?

Recall that (
QT

1

QT
2

)
Y =

(
Z
U

)
=

(
θ

0

)
+ QT E .

- Inference on the m × p matrix M is reduced to inference on the
q × p matrix θ ;

- Inference on the p × p matrix Σ relies on the (m − q)× p matrix U ;

- Both have low dimension than the m × p observed matrix Y .

Note that
S = UT U

is a sufficient statistic for Σ and may serve as an estimate of Σ.

Note also that S is invertible when p ≤ m − q and is non–invertible
when p > m − q.
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Related expectations

Let

F ∗(t) =
1
2

∫ ∞
t

f (ν) dν and F ∗∗(t) =
1
2

∫ ∞
t

F ∗(ν) dν.

Bellow Eθ,Σ will be the expectation w.r.t (1.3), E∗θ,Σ the expectation
w.r.t

(z,u) 7→ 1
K ∗
|Σ|−m/2 F ∗

[
tr{ (z − θ)Σ−1(z − θ)>}+ tr{Σ−1 uT u}

]
and E∗∗θ,Σ the expectation w.r.t

(z,u) 7→ 1
K ∗∗
|Σ|−m/2 F ∗∗

[
tr{ (z − θ)Σ−1(z − θ)>}+ tr{Σ−1 uT u}

]
where K ∗ and K ∗∗ are normalizing constants.
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Subclass of Berger densities

We consider the subclass of densities such that

0 < c ≤ F ∗(t)
f (t)

≤ b .

Examples :

- The logistic type distribution

f (t) ∝ exp (−βt − γ)

(1 + exp (−β t − γ))2

where β > 0 and γ > 0. Here

c =
1

2β
b =

(1 + e−γ)

2β
.

- The Gaussian distribution : c = b = 1 since F ∗ = f .

[5] D. Fourdrinier, F. Mezoued, and W. E. Strawderman. Bayes
minimax estimators of a location vector for densities in the Berger
class. Electronic Journal of Statistics. 6 :783–809, 2012.
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Stein Phenomenon

In the following, we set n = m − q.

In the Gaussian setting, James and Stein

[9] W. James and C. Stein, Estimation with Quadratic Loss.
Proceedings of the Fourth Berkeley Symposium on Mathematical
Statistics and Probability, 1961.

show that the usual estimators of the form

Σ̂a = a S where a > 0 ,

are inadmissible in

• the high dimensional setting (p > n)

• the low dimensional setting (p ≤ n) for p h n

This phenomenon extends to the elliptical case.
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Our objective

In a unified approach (p > n et p ≤ n), we aim to improve

Σ̂a = a S where a > 0 ,

by alternative (general) estimators of the form

Σ̂a,G = a
(
S + SS+G(Z ,S)

)
,

where S+ is the Moore-Penrose inverse of S and SS+G(Z ,S) is a
correction matrix.

Evaluation of theses estimators will be made

• under the quadratic loss

L(Σ, Σ̂) = tr(Σ−1Σ̂− Ip)2 ,

• under the data–based loss

LS(Σ, Σ̂) = tr(S+ Σ (Σ−1 Σ̂− Ip)2) .
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Previous works

The Gaussian case :

Konno (S non-invertible, quadratic loss)

[11] Y. Konno, Shrinkage estimators for large covariance matrices in
multivariate real and complex normal distributions under an invariant
quadratic loss. Journal of Multivariate Analysis, 100 : 2237–2253,
2009.

Tsukuma and Kubokawa (A unified approach, Stein–loss)

[14] H. Tsukuma and T. Kubokawa, Unified improvements in
estimation of a normal covariance matrix in high and low dimensions.
Journal of Multivariate Analysis, 143 : 233–248, 2016.

The elliptical case :

Kubokawa and Srivastava (S invertible, Stein-loss)

[12] T. Kubokawa and M. S. Srivastava, Robust improvement in
estimation of a covariance matrix in an elliptically contoured
distribution, The Annals of Statistics, 27 : 600–609, 1999.
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General estimators



1. Introduction

2. General estimators

2.1 Estimation under a quadratic loss

2.2 Estimation under a data–based loss

3. Orthogonally invariant estimators

4. Estimateurs de type Efron et Morris

5. Some conclusions and perspectives
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Estimateurs alternatifs

Consider the quadratic risk

R(Σ̂,Σ) = Eθ,Σ[tr(Σ−1Σ̂− Ip)2].

When Σ̂ = Σ̂a = a S, the best constant a is given by

ao =
1

K ∗∗(n + p + 1)
.

Consider alternative estimators of the form

Σ̂ao,G = ao
(
S + SS+G(Z ,S)

)
,

where SS+G(Z ,S) is a symmetric correction matrix.

The estimators Σ̂ao,G improves over Σ̂ao as soon as

∆(G) = R(Σ̂ao,G,Σ)− R(Σ̂ao ,Σ) ≤ 0

for all Σ, with strict inequality for some Σ.
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Finiteness of the risk difference

Proposition 1

Assume that Eθ,Σ
[
tr
(
Σ−1 S

)2
]
<∞ and Eθ,Σ

[
tr(Σ−1SS+G)2

]
<∞.

Then

∆(G) = a2
o Eθ,Σ

[
tr
(
Σ−1SS+(2S + G)Σ−1SS+G

)]
−2 ao Eθ,Σ

[
tr
(
Σ−1SS+G

)]
<∞.

Under which conditions on G this risk difference is
non–positive?
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Our approach

Replacing the integrand term of ∆(G) by a random matrix δ(G),
which does not depends on Σ−1 such that

∆(G) ≤ Eθ,Σ
[
δ(G)

]
.

A sufficient condition for ∆(G) to be non–positive is that δ(G) is
non–positive.

To this end, we rely on the following Stein–Haff type identity.
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A new Stein-Haff type identity

Lemma 1

Let V (z, s) be a p × p matrix function such that, for any fixed z,
G(z, s) is weakly differentiable with respect to s. Assume that
Eθ,Σ

[∣∣tr (Σ−1S S+ V
) ∣∣] <∞. Then we have

Eθ,Σ
[
tr
(

Σ−1SS+V
)]

= K ∗E∗θ,Σ
[
tr
(
(n − (p ∧ n)− 1) S+V

+2 SS+DS{SS+V}>
) ]
.

Here, DS is the Haff (differential) operator with generic terms

dij =
1
2

(1 + δij )
∂

∂Sij

with δij = 1 where i = j et δij = 0 where i 6= j .
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Related identity

When S is invertible (p ≤ n), since S+ = S−1, this identity
corresponds to

Eθ,Σ
[
tr
(

Σ−1G
)]

= K ∗E∗θ,Σ
[

tr
(
2Ds{G}T + (n − p − 1) S−1 G

)]
,

which is the same identity given by Kubokawa and Srivastava.

[12] T. Kubokawa and M. S. Srivastava, Robust improvement in
estimation of a covariance matrix in an elliptically contoured
distribution, The Annals of Statistics, 27 : 600–609, 1999.

When S is non–invertible (p < n), it becomes

Eθ,Σ
[
tr
(
Σ−1 SS+ G

)]
= K ∗E∗θ,Σ

[
tr
(

2 SS+Ds{SS+ G}T − S+G
)]
,

which is, to our knowledge, a new Stein-Haff type identity.
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Corollary 1

Let G(z, s) and V (z, s) be p × p matrices function s.t, for any fixed
z , G(z, s) and V (z, s) are weakly differentiable w.r.t to s. With
V := V (Z ,S), assume that SS+V is symmetric and s.t
Eθ,Σ

[∣∣tr(Σ−1SS+V Σ−1SS+G
) ∣∣]<∞. Assume also that

E∗θ,Σ
[∣∣tr (Σ−1SS+T ∗

) ∣∣]<∞. Then we have

Eθ,Σ
[
tr
(
Σ−1SS+V Σ−1SS+G

)]
= K ∗K ∗∗E∗∗θ,Σ[tr(2SS+Ds{SS+T ∗}T

+(n − (p ∧ n)− 1)S+T ∗)]

with

T ∗ = 2 [SS+ V Ds{SS+ G}T + SS+ GDs{SS+ V}]
−(p − n + 1) G S+ V .
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Application of the Stein-Haff type identity

Recall that

∆(G) = a2
o Eθ,Σ[ tr

(
Σ−1SS+(2S + G)Σ−1SS+G

)
]

−2 ao Eθ,Σ[tr
(
Σ−1SS+G

)
].

In order to get rid of Σ−1 in the integrand term, we apply

• Lemma 1 to Eθ,Σ
[
tr
(
Σ−1SS+G

)]
,

• Corollary 1 to Eθ,Σ
[
tr
(
Σ−1SS+(2S + G)Σ−1SS+G

)]
.

Then, we have

∆(G) = a2
oK ∗K ∗∗E∗∗θ,Σ[tr

(
2SS+Ds{SS+T ∗}T + (n − (p ∧ n)− 1)S+T ∗

)
]

− 2aoK ∗E∗θ,Σ[tr
(
2SS+Ds{SS+G}+ (n − (p ∧ n)− 1)S+G

)
]

where

T ∗ = 4 (S + G)Ds{SS+ G}+ G
(
2 n SS+ − (p − n + 1) S+ G

)
.
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An expression of ∆(G)

In order to have an homogeneous expression of ∆(G) in term of
Eθ,Σ-expectation, we use the following identities.

For any integrable function H(Z ,U), we have

K ∗ E∗θ,Σ[H(Z ,U)] = Eθ,Σ[ϕ∗θ,Σ(Z ,U) H(Z ,U)]

and

K ∗∗ E∗∗θ,Σ[H(Z ,U)] = Eθ,Σ[ϕ∗∗θ,Σ(Z ,U)ϕ∗θ,Σ(Z ,U) H(Z ,U)]

where, for any z ∈ Rq×p and u ∈ Rn×p,

ϕ∗θ,Σ(z,u) =
F ∗(ν)

f (ν)
and ϕ∗∗θ,Σ(z,u) =

F ∗∗(ν)

F ∗(ν)
,

with

ν = tr{(z − θ) Σ−1 (z − θ)T }+ tr{Σ−1 uT u}.
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Dominance results

Theorem 1

Consider a density as in (1.3) s.t c ≤ F ∗(t)/f (t) ≤ b. Under the
condition

tr
[

2 S+SDS{SS+G} − (n − (p ∧ n)− 1) S+G
]
≥ 0 ,

the estimators Σ̂ao,G improves over Σ̂ao as soon as

tr
[
2S+SDS{SS+T ∗}> − S+T ∗

− 2(p + n + 1)
c2

b2

(
2S+SDS{SS+G} − (n − (p ∧ n)− 1)S+G

) ]
≤ 0 ,

where

T ∗ = 4(S + G)DS{SS+G}+ G
(
2 n SS+ − (p − n + 1)S+G

)
.
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Limitations of the quadratic loss

• Difficult to handle on since we apply the Haff DS twice.

• Imposes strong conditions on SS+G, which makes difficult to
derive improved estimators.

From where theses difficulties come from?
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Limitations of the quadratic loss

The quadratic loss can be rewritten as

L(Σ, Σ̂) = tr( (Σ−1 Σ̂− Ip)2) =

two Σ−1

tr(Σ−1 Σ̂ Σ−1 Σ̂) −2 tr(Σ−1 Σ̂) + p .

Requires a twice application of the Stein-Haff type identity.

How to remedy?

We introduce the data, which give rise to the data–based loss

LS(Σ, Σ̂) = tr(S+ Σ (Σ−1 Σ̂− Ip)2)

=

One Σ−1

tr(Σ−1 Σ̂ S+ Σ̂) −2 tr (S+ Σ̂) + tr (S+ Σ) .
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Alternative estimators

Consider the data–based risk

RS(Σ̂,Σ) = Eθ,Σ[tr(S+ Σ (Σ−1 Σ̂− Ip)2)].

When Σ̂ = Σ̂a = a S, the best constant a is

ao =
1

K ∗ (p ∨ n)
.

Consider alternative estimators of the form

Σ̂ao,G = ao
(
S + SS+G(Z ,S)

)
,

where SS+G(Z ,S) is a correction matrix which is not necessarily
symmetric.

The estimators Σ̂ao,G improves over Σ̂ao as soon as

∆(G) = RS(Σ̂ao,G,Σ)− RS(Σ̂ao ,Σ) ≤ 0,

for all Σ, with strict inequality for some Σ.
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Risk difference finiteness

Proposition 2

Assume that Eθ,Σ
[
‖S+G‖2

F

]
, Eθ,Σ

[
‖Σ−1SS+G‖2

F

]
, Eθ,Σ [tr(Σ S+)]

and Eθ,Σ
[
tr(Σ−1 S)

]
are finite.

Then

∆(G) = a2
o Eθ,Σ

[
tr
(
Σ−1SS+G

{
Ip + S+G + SS+

}) ]
− 2 ao Eθ,Σ

[
tr
(
S+ G

) ]
<∞ .
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Conditions d’amélioration

Theorem 2

Consider a density as in (1.3) s.t c ≤ F ∗(t)/f (t) ≤ b. Under the
condition

tr(S+ G) ≥ 0 ,

the estimators Σ̂ao,G improves over Σ̂ao as soon as

tr
[
(n − (p ∧ n)− 1)(S+GSS+ + (S+G)2) + αS+G

+2 SS+DS{SS+G + SS+GS+G + SS+ G SS+}T
]
≤ 0 ,

where
α = (n − (p ∧ n)− 2

c
b

(p ∨ n)− 1) .
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Orthogonally invariant
estimators



The eigenvalue decomposition of S

Let the eigenvalue decomposition of S

S = H1 L H>1

where
H1 ∈ Rp×(p∧n) is a semi-orthogonal matrix

and
L = diag(l1, . . . , l(p∧n)) with l1 > l2 > · · · > l(p∧n) > 0 .

The orthogonally invariant estimators are of the form

Σ̂ = H1Φ(L)HT
1

where

Φ(L) = diag(φ1(L), . . . , φ(p∧n)(L)) with φ1(L) > · · · > φ(p∧n)(L).

27/45



The Haff type estimators

Recall that
Σ̂ao,G = ao

(
S + SS+G(Z ,S)

)
.

Let
G(Z ,S) = ν t(ν)H1 HT

1

where
ν = 1/tr(S+)

and t(·) a twice differentiable non–increasing convex function.

The Haff type estimators are of the form

Σ̂Haff = ao H1 diag
(
l1 + ν t(ν), l2 + ν t(ν), . . . , lp∧n + ν t(ν)

)
HT

1 .

[8] L.R. Haff, Empirical Bayes estimation of the multivariate normal
covariance matrix, The Annals of Statistics, 8 : 586–597, 1980.
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The Haff type estimators under a quadratic loss

Proposition 3

Consider a density as in (1.3) s.t c ≤ F ∗(t)/f (t) ≤ b and

p + n − (p ∧ n) + 2
p + n + 1

≤ c2

b2 ≤
2 p + 2 n − 5 (p ∧ n)− 3

p + n + 1
.

Then Σ̂Haff improves over Σ̂ao as soon as

(i) (p + n − 2 (p ∧ n) + 1) t(ν) + 2 ν t ′(ν)≥0 ,

(ii) 0 ≤ t(ν) ≤
2 (p + n − 2 (p ∧ n)− 1)

(
(p + n + 1) c2

b2 − p − n + p ∧ n − 2
)

(p + n − 2 (p ∧ n) + 1)(p + n − 2 (p ∧ n) + 3)

(iii) {2 (p + n − 4 (p ∧ n) + 3) t(ν) + 2 ν t ′(ν)

+

[
2 p + 2 n − 5 (p ∧ n) + 5− (p + n + 1)

c2

b2

]}
t ′(ν)

+ 2
{

t(ν) + (p ∧ n)2} ν t ′′(ν) ≤0 .
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The Haff type estimators under a data–based loss

Proposition 4

Consider a density as in (1.3) s.t c ≤ F ∗(t)/f (t) ≤ b and

c
b
≥ (p ∨ n)− (p ∧ n) + 1

(p ∨ n)
.

Then Σ̂Haff improves over Σ̂ao

0 ≤ t(ν) ≤ 2
((p ∧ n)− 1) + (p ∨ n)(c/b − 1)

(p ∨ n)− (p ∧ n) + 1
.
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The Konno estimators

Recall that
Σ̂ao,G = ao

(
S + SS+G(Z ,S)

)
.

Let
G(Z ,S) = ν t H1 HT

1

where
ν = 1/tr(S+)

and
t is a positive constant,

The Konno estimators are of the form

Σ̂Kon. = ao H1 diag
(
l1 + ν t , l2 + ν t , . . . , lp∧n + ν t

)
HT

1 .

[11] Y. Konno, Shrinkage estimators for large covariance matrices in
multivariate real and complex normal distributions under an invariant
quadratic loss. Journal of Multivariate Analysis, 100 : 2237–2253,
2009.31/45



The Konno estimators under the quadratic loss

Proposition 5

Consider a density as in (1.3) s.t c ≤ F ∗(t)/f (t) ≤ b and

p + n − (p ∧ n) + 2
p + n + 1

≤ c2

b2 ≤
2 p + 2 n − 5 (p ∧ n)− 3

p + n + 1
.

Then Σ̂Kon. improves over Σ̂ao as soon as

0 ≤ t ≤
2 (p + n − 2 (p ∧ n)− 1)

(
(p + n + 1)c2/b2 − p − n + p ∧ n − 2

)
(p + n − 2 (p ∧ n) + 1)(p + n − 2 (p ∧ n) + 3)
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The Konno’s estimators under the data–based loss

Proposition 6

Consider a density as in (1.3).

Then Σ̂Kon. improves over Σ̂ao as soon as

0 ≤ t ≤ 2 ((p ∧ n)− 1)

(p ∨ n)− (p ∧ n) + 1
.

This result is no longer restricted to the Burger subclass
s.t. c ≤ F ∗(t)/f (t) ≤ b and then is valuable for all the
classe of e.s.d
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Estimateurs de type Efron et
Morris



Efron and Morris type estimators

Recall that
Σ̂ao,G = ao

(
S + SS+G(Z ,S)

)
.

Let Q ∈ R(p∧n)×q be a matrix of constants such that

Rang(Q) = q ≤ p ∧ n.

Let the orthogonal projection matrix

Qo = Q (QT Q)−1 QT .

When
G(Z ,S) =

t
tr(L−1 Qo)

H1 Qo HT
1 , t > 0.

The Efron and Morris type estimators are of the form

Σ̂EM = ao

(
S +

t
tr(L−1 Qo)

H1 Qo HT
1

)
34/45



Efron and Morris type estimators under the data–based loss

Proposition 7
Consider a density as in (1.3).

Then Σ̂EM improves on Σ̂ao as soon as

0 ≤ t ≤ 2 ((p ∧ n)− 1)

(p ∨ n)− (p ∧ n) + 1
.
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Numerical study

We evaluate the percentage of improvement of Σ̂Kon. w.r.t Σ̂ao .

The Percentage Relative Improvement in Average Loss. (PRIAL) is
defined as

PRIAL =
average loss of Σ̂ao − average loss of Σ̂Kon.

average loss of Σ̂ao

× 100 .

Note that :

PRIALQ : the percentage of improvement under the quadratic loss

PRIALS : the percentage of improvement under the data–based loss
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Numerical study

1000 independent Monte–Carlo replications for some couples (p,n)

and for
(Σ)ij = 0.9|i−j|.

p n PRIALQ% PRIALS%
20 4 0.91 15.00
20 8 2.56 18.56
20 12 5.05 25.56
20 16 4.17 47.034

100 20 0.40 3.39
100 40 1.24 4.19
100 60 1.56 5.76
100 80 1.531 10.42
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Some conclusions and
perspectives



Conclusions

• Estimation of the scale matrix under quadratic loss and
data–based loss for a wide class of e. s. d.

• Unified approach that can deal with both invertible and
non–invertible S.

• A new and more general Stein-Haff identity for the
high-dimensional e. s. d. setting.

• A robust improved estimators under the data–based loss.

Achievements :

• Published : [7] A. M. Haddouche, D. Fourdrinier ans F. Mezoued,
Scale matrix estimation of an elliptically symmetric distribution in
high and low dimensions, Journal of Multivariate Analysis 181 :
104680, 2021.

• Submitted to Statistics and Probability letters : [6] A. M.
Haddouche, D. Fourdrinier and F. Mezoued, Covariance matrix
estimation under a data–based loss.
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Perspectives

Consider

Y = M + E , E ∼ ES (0mp, Im ⊗ Σ)

where Σ is of Rank = r < p.

The noise E does not have a density with respect to the Lebesgue
measure.

[4] J.A Dı́az-Garcı́a, V. Leiva-Sánchez and M. Galea, Singular
elliptical distribution : density and applications, Communications in

Statistics–theory and methods. 5 : 665–681, 2002.
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Singular elliptical symmetric distributions

Estimate Σ under :

L(Σ̂,Σ) = tr
(

Σ̂Σ+ − ΣΣ+
)2

LS(Σ̂,Σ) = tr
(

S+Σ
(

Σ̂Σ+ − ΣΣ+
)2
)

Estimate Σ+ under

L(Σ̂+,Σ+) =‖ Σ̂+ − Σ+ ‖2
F .
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The Gaussian case

Orthogonally invariant estimators

[3] D. Chételat, M. T. Wells, Improved second order estimation in the
singular multivariate normal model, Journal of Multivariate Analysis ,

147 :11 – 19, 2016.

A Stein–Haff type identity

E
[
tr
(
Σ+H1Φ(L)H>1

)]
= E

n∧r∑
i=1

(|n − r | − 1)
φi

li
+ 2

∂φi

∂li
+ 2

∑
j>i

φi − φj

li − lj




where Rang(S) = n ∧ r .

41/45



Generalization to the elliptical singular case

• How to derive a new Stein-Haff type identity for
orthogonally invariant estimators?

• How to derive a Stein-Haff type identity of the form

E
[
tr
(
Σ+SS+G(Z ,S)

)]
=?
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Predictive density estimation

Predictive density estimation under the Wasserstein loss for location
and scale–location distribution :

[13] T. Matsuda and W. E. Strawderman, Predictive density
estimation under the Wasserstein loss, Journal of Statistical Planning

and Inference, 210 : 53 – 63, 2021.

The authors showed that the plug-in densities is a complete class.

A duality with the point estimation problem is showed.

Results on point estimation are transportable to the predictive density
estimation under the Wasserstein loss function.
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Predictive density estimation

An Extension to the case of an unknown covariance matrix is an
interesting future problem (which include the elliptical case)

The problem reduces to point estimation of the covariance matrix
under the following Wasserstein loss

L(Σ̂,Σ) = tr
(

Σ + Σ̂− 2 (Σ1/2 Σ̂ Σ1/2)1/2
)

Using, the usual key tool, Stein–Haff type identity seems not possible
since the loss does not depends on Σ−1.
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Thank you for your attention !

For references and other details, I can be reached at
mohamed.haddouche@insa-rouen.fr
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