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Introduction



Model

Let consider the multivariate linear regression model

Y = X β + E , (1.1)

where

I Y is an observed n× p matrix, X is an n× q matrix of known constants
such that

rank(X) = q ≤ n. (1.2)

I β is a q× p matrix of unknown parameters.
I E is an n× p elliptically symmetric noise.

We assume that E has a density, w.r.t the Lebesgue measure in Rpn, of the
form

ε 7→ |Σ|−n/2 f
(
tr( εΣ−1ε>)

)
, (1.3)

where Σ is a p× p unknown positive definite matrix and f (·) is a non–negative
unknown function.
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The canonical form

Although the matrix of regression coefficients β is also unknown, we are
interested in estimating the invertible scale matrix Σ.

We address this problem under a decision–theoretic framework through a
canonical form of the model (1.1).
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The canonical form

Thanks to (1.2), the QR decomposition of X is of the form

X = Q1 T>,

where

I Q1 is a n× q semi-orthogonal matrix.

I T a q× q lower triangular matrix with positive diagonal elements.

There exists an n× (n− q) semi-orthogonal matrix Q2 such that

Q>2 X β = Q>2 Q1 T>β = 0 .

Completes Q1 with Q2 such that Q = (Q1Q2) is an n× n orthogonal matrix.
Then, we have(

Q>1
Q>2

)
Y =

(
Z
U

)
=

(
Q>1
Q>2

)
X β + Q>E =

(
θ

0

)
+ Q>E , (1.4)
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Why the canonical form

Recall that (
Q>1
Q>2

)
Y =

(
Z
U

)
=

(
θ

0

)
+ Q>E .

Inference on the p× p scale matrix Σ relies on the (n− q)× p matrix U which is
of low dimension than the n× p observed matrix Y.

Note that
S = U> U

is a sufficient statistic for Σ and may serve as an estimate of Σ.

Note also that S is invertible when p ≤ n− q and is non-invertible when
p > n− q.

In the following we set m = n− q
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Related expectations

Recall that
ε 7→ |Σ|−n/2 f

(
tr( εΣ−1ε>)

)
.

The density of Q>E is the same as that of E . It follows that the density of
(Z> U>)> = Q>Y is

(z, u) 7→ |Σ|−n/2 f
(

tr (z− θ) Σ−1 (z− θ)> + tr u Σ−1 u>
)
. (1.5)

Bellow Eθ,Σ will be the expectation w.r.t (1.5) and E∗θ,Σ the expectation w.r.t

(z, u) 7→ 1
K∗
|Σ|−n/2 F∗

(
tr (z− θ) Σ−1 (z− θ)> + tr u Σ−1 u>

)
,

where, for any t ≥ 0,

F∗(t) =
1
2

∫ ∞
t

f (ν) dν .
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What is wrong with the usual estimators?

The usual estimators are of the form

Σ̂a = a S, where a > 0.

In the Gaussian case Σ̂1/m correspond respectively to the unbiased estimator.

In the standard asymptotic setting, when p is fixed and m→∞ the unbiased
estimator Σ̂1/m is a good estimator ; in particular, it is a consistent and
invertible estimator.

In the general asymptotic setting, when m, p→∞ with p/m→ c > 0, Σ̂1/m

perform poorly and is non-invertible for c > 1.

[5] O. Ledoit and M. Wolf, A well-conditioned estimator for large-dimensional
covariance matrices, 2004.
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What is wrong with the usual estimators

Fig. 1 – Estimation of the eig. val. of Σ = Ip with Σ̂1/n−1
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Stein phenomenon

In the Gaussian setting, James and Stein

[3] W. James and C. Stein, Estimation with Quadratic Loss. Proceedings of the
Fourth Berkeley Symposium on Mathematical Statistics and Probability, 1961.

show that the usual estimators of the form

Σ̂a = a S , where a > 0,

are inadmissible in the general asymptotic setting, when m, p→∞ with
p/m→ c > 0.

This phenomenon extends to the elliptical case.

In the following we set r = min(m, p).
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Our objective

Based on the eigenvalue decomposition of S = H L H>, where

I H is a p× r semi–orthogonal matrix of eigenvectors.

I L = diag(l1, . . . , lr), with l1 >, . . . , > lr, is the diagonal matrix of the r
positive corresponding eigenvalues of S.

We aim to improve

Σ̂a = a S , where a > 0,

by alternative estimators of the form

Σ̂Ψ = a
(
S + H L Ψ(L) H>) = a H L

(
Ir + Ψ(L)

)
H> ,

with Ψ(L) = diag(ψ1(L), . . . , ψr(L)), where ψi = ψi(L) (i = 1, . . . , r) is a
differentiable function of L, which are usually called orthogonally invariant
estimators.
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Our objective

The performance of any estimators Σ̂ is assessed through the data–based
loss

LS(Σ̂,Σ) = tr
(

S+Σ
(
Σ−1Σ̂− Ip

)2
)

(1.6)

and its associated risk

R(Σ̂,Σ) = Eθ,Σ
[
LS(Σ̂,Σ)

]
,

where

I Eθ,Σ denotes the expectation w.r.t. the density specified below in (1.5).

I S+ is the Moore–Penrose inverse of S. Note that, when c > 1, S is
non–invertible and, when c < 1, S is invertible so that S+ coincides with
the regular inverse S−1.
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Why this data–based loss?

As shown by various authors such as Haddouche et al. (2021, [1]), Konno
(2009, [4]) and (1980, Haff [2]), it is difficult to handle on the usual quadratic
loss

L(Σ, Σ̂) = tr( (Σ−1 Σ̂− Ip)2) =

two Σ−1

tr(Σ−1 Σ̂ Σ−1 Σ̂) −2 tr(Σ−1 Σ̂) + p . (1.7)

We introduce the data, which give rise to the data–based loss

LS(Σ, Σ̂) = tr(S+ Σ (Σ−1 Σ̂− Ip)2) =

one Σ−1

tr(Σ−1 Σ̂ S+ Σ̂) −2 tr (S+ Σ̂) + tr (S+ Σ) .
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Improved estimators



Our approach

Consider the data–based risk function

R(Σ̂,Σ) = Eθ,Σ
[
tr
(

S+Σ
(
Σ−1Σ̂− Ip

)2
) ]

.

When Σ̂ = Σ̂a = a S, the best constant a is given by

ao =
1

v K∗
, where v = max(p,m) . (2.1)

Consider alternative estimators of the form

Σ̂Ψ = ao H L
(
Ir + Ψ(L)

)
H> . (2.2)

The estimators Σ̂Ψ improves over Σ̂ao as soon as

∆(G) = R(Σ̂Ψ,Σ)− R(Σ̂ao ,Σ) ≤ 0

for all Σ, with strict inequality for some Σ.
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Our approach

The risk difference between Σ̂Ψ and Σ̂ao is given by

∆(Ψ) = a2
o Eθ,Σ

[
tr
(
Σ−1HL(2 Ψ + Ψ2)H>

)]
− 2 ao Eθ,Σ [tr (Ψ)] . (2.3)

Replacing the integrand term of ∆(Ψ) by a random matrix δ(Ψ), which does
not depends on Σ−1 such that

∆(Ψ) ≤ E∗θ,Σ[δ(Ψ)] .

A sufficient condition for ∆(Ψ) to be non–positive is that δ(Ψ) is non–positive.

To this end, we rely on the following Stein–Haff type identity.
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A Stein–Haff type identity

Lemma 1

Let Φ(L) = diag(φ1, . . . , φr) where φi = φi(L) (i = 1, . . . , r) is differentiable
function of L. Assume that Eθ,Σ

[
|tr(Σ−1H L Φ(L) H>)|

]
<∞. Then we have

Eθ,Σ
[
tr(Σ−1 HL Φ(L) H> )

]
= K∗ E∗θ,Σ

[
r∑

i=1

(
(v− r + 1)φi + 2 li

∂φi

∂li

+

r∑
j 6=i

li φi − lj φj

li − lj

)]
.
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Dominance results

Theorem 1

Assume that Eθ,Σ
[
tr(S)

]
, Eθ,Σ

[
tr(S+)

]
, Eθ,Σ

[
‖HLΨ(L) H>‖2

F

]
and

Eθ,Σ
[
‖HΨ(L)H>‖2

F

]
are finite. Let Ψ(L) = diag(ψ1, . . . , ψr) with tr

(
Ψ(L)

)
≥λ, for

a fixed positive constant λ. Then an upper bound of the risk difference in
(2.3) is given by

∆(Ψ(L)) ≤ a2
o K∗ E∗θ,Σ

[
g(Ψ)

]
,

where

g(Ψ) =

r∑
i=1

{
2(v− r + 1)ψi + (v− r + 1)ψ2

i + 4li(1 + ψi)
∂ψi

∂li
+

r∑
j6=i

li (2ψi + ψ2
i )− lj(2ψj + ψ2

i )

li − lj
− 2vλ

}
.

Also, Σ̂Ψ in (2.2) improves over Σ̂ao in (2.1) as soon as g(Ψ) ≤ 0.
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F

]
are finite. Let Ψ(L) = diag(ψ1, . . . , ψr) with tr

(
Ψ(L)

)
≥λ, for

a fixed positive constant λ. Then an upper bound of the risk difference in
(2.3) is given by

∆(Ψ(L)) ≤ a2
o K∗ E∗θ,Σ

[
g(Ψ)

]
,

where
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i + 4li(1 + ψi)
∂ψi

∂li
+
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li (2ψi + ψ2
i )− lj(2ψj + ψ2

i )

li − lj
− 2vλ

}
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Sketch of proof

Recall that

∆(Ψ) = a2
o Eθ,Σ

[
tr
(
Σ−1HL(2 Ψ + Ψ2)H>

)]
− 2 ao Eθ,Σ [tr (Ψ)] .

In order to the rid of Σ−1 in the integrand term, we apply the Stein–Haff type
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Examples

Note that Theorem 1 is well adapted to deal with:

I The James Stein (1961, [3]) estimator where

ψi(L) =
1

(v + r − 2i + 1)
,

for i = 1, . . . , r, since

tr
(
Ψ(L)

)
> λ = 1/(v + r − 1).

I The Efron-Morris-Dey estimator, considered by Tsukuma and Kubokawa
(2020, [6]), where

ψi(L) =
1(

1 + b lαi
tr(Lα)

)
v
,

for i = 1, . . . , r and for positive constants b and α, since

tr
(
Ψ(L)

)
> λ = r /(b + 1) v .
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Haff estimators : the Gaussian case

When c ≤ 1, Haff (1980, [2]) considered an empirical Bayes estimation of Σ.

Let a prior of Σ−1 be
Σ−1 ∼ Wp(p + 1, γ−1Ip),

where γ is an unknown hyperparameter.

The resulting posterior distribution of Σ−1 given S is

Σ−1|S ∼ Wp(m + p + 1, (S + γIp)−1).

So that, the posterior mean of Σ is

E[Σ|S] =
1
m

(S + γIp) .
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Haff estimators : the Gaussian case

The hyperparameter γ is estimated from the marginal density of S proportional
to

γp(p+1)/2|S|(m−p−1)/2|S + γIp|−(m+p+1)/2 .

The resulting maximum likelihood estimator is

γ̂ =
p(p + 1)

m + p + 1
1

tr(S−1)
.

Thus we obtain an empirical Bayes estimator of the form

Σ̂EB =
1
m

(S + γ̂ Ip) =
1
m

H L
(

Ip +
p(p + 1)

m + p + 1
L−1

tr(L−1)

)
H>

since S = H L H> and tr(S−1) = tr(L−1).
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Haff estimators : the Gaussian case

Taking into account both cases where c ≤ 1 and c > 1, we define a Haff type
estimators as

Σ̂α,b = ao H
(

Ir + b
L−α

tr(L−α)

)
H> , where α ≥ 1 and b > 0 . (2.4)

For α = 1, this is the estimator considered by Konno (2009, [4]), who deals
with the Gaussian case and the quadratic loss

Tsukuma and Kubokawa (2020, [6]) used an extended Stein loss.

An elliptical setting was also considered by Haddouche et al. (2021, [1]) under
the usual quadratic loss function.
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Haff estimators : the elliptical case

Recall that the Haff estimators are of the form

Σ̂α,b = ao H
(

Ir + b
L−α

tr(L−α)

)
H> where α ≥ 1 and b > 0 .

Proposition 1

Assume that the expectations Eθ,Σ [tr(S+)] and Eθ,Σ
[
tr2(S)

]
are finite. Then

the Haff type estimators Σ̂α,b in (2.4) improves on the usual estimator Σ̂ao in
(2.1) under the data–based loss (1.6) as soon as

0 < b ≤ 2 (r − 1)

(v− r + 1)
.

23/36



Haff estimators : the elliptical case

Recall that the Haff estimators are of the form

Σ̂α,b = ao H
(

Ir + b
L−α

tr(L−α)

)
H> where α ≥ 1 and b > 0 .

Proposition 1

Assume that the expectations Eθ,Σ [tr(S+)] and Eθ,Σ
[
tr2(S)

]
are finite. Then

the Haff type estimators Σ̂α,b in (2.4) improves on the usual estimator Σ̂ao in
(2.1) under the data–based loss (1.6) as soon as

0 < b ≤ 2 (r − 1)

(v− r + 1)
.

23/36



Sketch of Proof 1/3

Applying Theorem 1, an upper bound of the risk difference is given by

∆(Ψ) ≤ a2
o K∗ E∗θ,Σ

(
g(Ψ)

)
, (2.5)

where g(Ψ) = g1(Ψ) + g2(Ψ) with

g1(Ψ) = −2 (r − 1) b
r∑

i=1

l−αi

tr(L−α)
+ (v− r + 1) b2

r∑
i=1

l−2α
i

tr2(L−α)

and

g2(Ψ) = 4lib
(

1 + b
l−αi

tr(L−α)

)
∂

∂li

(
l−αi

tr(L−α)

)
+

2b
tr(L−α)

r∑
i=1

r∑
j 6=i

l1−αi − l1−αj

li − lj

+
b2

tr2(L−α)

r∑
i=1

r∑
j6=i

l1−2α
i − l1−2α

j

li − lj
.

The proof consists in proving that g2(Ψ) is non–positive.
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Sketch of Proof 2/3

Recall that

g2(Ψ) = 4lib
(

1 + b
l−αi

tr(L−α)

)
∂

∂li

(
l−αi

tr(L−α)

)
+

2b
tr(L−α)

r∑
i=1

r∑
j 6=i

l1−αi − l1−αj

li − lj

+
b2

tr2(L−α)

r∑
i=1

r∑
j6=i

l1−2α
i − l1−2α

j

li − lj
.

It can be shown that, for α ≥ 1,

r∑
i=1

r∑
j 6=i

l1−αi − l1−αj

li − lj
≤ 0 ,

r∑
i=1

r∑
j6=i

l1−2α
i − l1−2α

j

li − lj
≤ 0

and

∂

∂li

(
l−αi

tr(L−α)

)
= α

l−α−1
i

tr(L−α)

(
l−αi

tr(L−α)
− 1
)
≤ 0 .
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Sketch of Proof 3/3

Therefore, since l−αi ≤ tr(L−α), the integrand term g2(Ψ) ≤ 0. Then

g(Ψ) ≤ g1(Ψ) = −2 (r − 1) b + (v− r + 1) b2 tr(L−2α)

tr2(L−α)
.

Now, using the fact that tr(L−2α) ≤ tr2(L−α), we have

g(Ψ) ≤ −2 (r − 1) b + (v− r + 1) b2 .

Hence, an upper bound for the risk difference in (2.5) is given by

∆(Ψ) ≤ a2
o b K∗ E∗θ,Σ

[
− 2 (r − 1) + (v− r + 1) b

]
.

Therefore, Σ̂α,b improves over Σ̂ao under the data-based loss (1.6) as soon as
0 < b ≤ b0 = 2 (r − 1)/(v− r + 1) .
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Numerical study



Case of a t-distribution

Let the elliptical density in (1.3) be a variance mixture of normal distributions
where the mixing variable, with density h, has the inverse–gamma distribution
IG(k/2, k/2)

Thus, for any t ≥ 0, the generating function f in (1.3) has the form

f (t) =

∫ ∞
0

1
(2vπ)np/2 exp

(
−t
2v

)
h(v) dv ,

which corresponds to the t–distribution with k degrees of freedom.

Then the primitive F∗ of f in is, for any t ≥ 0,

F∗(t) =

∫ ∞
0

v

(2vπ)np/2 exp

(
−t
2v

)
h(v) dv .

The normalizing constant K∗ is given by

K∗ =
k

k − 2
.
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Improved estimators

We study numerically the performance of

Σ̂α,b = ao H
(

Ir + b
L−α

tr(L−α)

)
H> , (3.1)

where

0 ≤ b ≤ b0 =
2 (r − 1)

v− r + 1
and α ≥ 1.

Konno (2009, [4]) consider the case α = 1, in the Gaussian setting and under
the usual quadratic loss, for which its improvement condition is
0 ≤ b ≤ b1 = 2 (r − 1) (v + r + 1)/(v− r + 1) (v− r + 3). Although b0 < b1, the
improvement condition in (3.1) is valid for any α ≥ 1 and all the class of
elliptically symmetric distributions.

It was shown numerically by Haddouche et al. (2021, [1]) that b1 is optimal in
the Gaussian context.
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elliptically symmetric distributions.

It was shown numerically by Haddouche et al. (2021, [1]) that b1 is optimal in
the Gaussian context.
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The considered structures of Σ

We consider the following structures of Σ :

I (i) the identity matrix Ip

I (ii) an autoregressive structure with coefficient 0.9 (i.e. a p× p matrix
where the (i, j)th element is 0.9|i−j|).

To assess how an alternative estimator Σ̂α,b improves over Σ̂ao , we compute
the Percentage Relative Improvement in Average Loss (PRIAL) defined as

PRIAL(Σ̂α,b) =
R(Σ̂ao ,Σ)− R(Σ̂α,b,Σ)

R(Σ̂ao ,Σ)
× 100
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Effect of α

We study the effect of α on the prial’s of the estimator Σ̂α,b0 over

I Σ̂ao = S/v when the sampling distribution is Gaussian,

I Σ̂ao = S(k− 2)/vk when it is the t–distribution (K∗ in (2.1) equals (k− 2)/k).

We consider the non–invertible case where p/m = c > 1 , with
(p,m) = (50, 20), for the structures (i) and (ii) of Σ for the t–distribution, with
k = 5, and the Gaussian distribution
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The data–based loss
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Fig. 2 – PRIAL’s of Σ̂α,b0 in (3.1) under the data–based loss (1.6).

I For the structure (i) of Σ, note that, for α ≥ 6, the prial’s stabilize at 12.5%,
in the Gaussian case, and at 8.5%, in the Student case.

I Similarly, the prial’s are better in the Gaussian setting for the structure (ii)
I When α is close to zero, the prial’s are small for the structure (i) and may

be negative for the structure (ii).
31/36



The data–based loss

0 2 4 6 8
 

0

2

4

6

8

10

12

 P
RI

AL

Gaussian
Student

(i)

0 2 4 6 8
 

4

3

2

1

0

1

2

3

 P
RI

AL

Gaussian
Student

(ii)

Fig. 2 – PRIAL’s of Σ̂α,b0 in (3.1) under the data–based loss (1.6).

I For the structure (i) of Σ, note that, for α ≥ 6, the prial’s stabilize at 12.5%,
in the Gaussian case, and at 8.5%, in the Student case.

I Similarly, the prial’s are better in the Gaussian setting for the structure (ii)
I When α is close to zero, the prial’s are small for the structure (i) and may

be negative for the structure (ii).
31/36



The data–based loss

0 2 4 6 8
 

0

2

4

6

8

10

12

 P
RI

AL

Gaussian
Student

(i)

0 2 4 6 8
 

4

3

2

1

0

1

2

3

 P
RI

AL

Gaussian
Student

(ii)

Fig. 2 – PRIAL’s of Σ̂α,b0 in (3.1) under the data–based loss (1.6).

I For the structure (i) of Σ, note that, for α ≥ 6, the prial’s stabilize at 12.5%,
in the Gaussian case, and at 8.5%, in the Student case.

I Similarly, the prial’s are better in the Gaussian setting for the structure (ii)
I When α is close to zero, the prial’s are small for the structure (i) and may

be negative for the structure (ii).
31/36



Loss functions comparison under the Gaussian assumption
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Fig. 3 – PRIAL’s of Σ̂α,b0 under data–based loss and PRIAL’s of Σ̂α,b1 under quadratic loss.

I Prial’s of Σ̂α,b0 w.r.t Σ̂ao = S/v under the data–based loss (1.6) and the
prial’s of Σ̂α,b1 w.r.t Σ̂ao = S/(v + r + 1) under the quadratic loss (1.7).

I For (i) and (ii), the prial’s are better under the data–based loss.
I For the structure (i) with α = 1 (the Konno’s estimator), we observe a prial

equal to 1.73% which is similar to that of [4].
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Conclusion

I For a wide class of e.s.d, we provide a large class of estimators of the
scale matrix Σ for the elliptical multivariate linear model (1.1) which
improve over the usual estimators a S.

I The use of the data–based loss is more attractive than the use of the
classical quadratic loss.

I The data–based loss brings more improved estimators and their
improvement is valid within a larger class of distributions.
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Thank you for your attention !

For references and other details, I can be reached at
mohamed.haddouche@insa-rouen.fr
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